Skip to content

Commit

Permalink
Added the tests and renamed the files
Browse files Browse the repository at this point in the history
Signed-off-by: Pallavi Jaini <[email protected]>
  • Loading branch information
pallavijaini0525 committed Aug 13, 2024
1 parent da944ae commit b3c2e3f
Show file tree
Hide file tree
Showing 3 changed files with 235 additions and 3 deletions.
6 changes: 3 additions & 3 deletions ChatQnA/docker/xeon/README_pinecone.md
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@ Then run the command `docker images`, you will have the following 7 Docker Image

### Setup Environment Variables

Since the `docker_compose_pinecone.yaml` will consume some environment variables, you need to setup them in advance as below.
Since the `compose_pinecone.yaml` will consume some environment variables, you need to setup them in advance as below.

**Export the value of the public IP address of your Xeon server to the `host_ip` environment variable**

Expand Down Expand Up @@ -212,7 +212,7 @@ Note: Please replace with `host_ip` with you external IP address, do not use loc
```bash
cd GenAIExamples/ChatQnA/docker/xeon/
docker compose -f docker_compose_pinecone.yaml up -d
docker compose -f compose_pinecone.yaml up -d
```

### Validate Microservices
Expand Down Expand Up @@ -330,7 +330,7 @@ curl -X POST "http://${host_ip}:6008/v1/dataprep/get_file" \

## Enable LangSmith for Monotoring Application (Optional)

LangSmith offers tools to debug, evaluate, and monitor language models and intelligent agents. It can be used to assess benchmark data for each microservice. Before launching your services with `docker compose -f docker_compose_pinecone.yaml up -d`, you need to enable LangSmith tracing by setting the `LANGCHAIN_TRACING_V2` environment variable to true and configuring your LangChain API key.
LangSmith offers tools to debug, evaluate, and monitor language models and intelligent agents. It can be used to assess benchmark data for each microservice. Before launching your services with `docker compose -f compose_pinecone.yaml up -d`, you need to enable LangSmith tracing by setting the `LANGCHAIN_TRACING_V2` environment variable to true and configuring your LangChain API key.

Here's how you can do it:

Expand Down
File renamed without changes.
232 changes: 232 additions & 0 deletions ChatQnA/tests/_test_chatqna_pinecone_on_xeon.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

set -e
echo "IMAGE_REPO=${IMAGE_REPO}"

WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')

function build_docker_images() {
cd $WORKPATH
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps

docker build -t opea/embedding-tei:latest -f comps/embeddings/langchain/docker/Dockerfile .
docker build -t opea/retriever-pinecone:latest -f comps/retrievers/langchain/pinecone/docker/Dockerfile .
docker build -t opea/reranking-tei:latest -f comps/reranks/tei/docker/Dockerfile .
docker build -t opea/llm-tgi:latest -f comps/llms/text-generation/tgi/Dockerfile .
docker build -t opea/dataprep-pinecone:latest -f comps/dataprep/pinecone/docker/Dockerfile .

cd $WORKPATH/docker
docker build --no-cache -t opea/chatqna:latest -f Dockerfile .

cd $WORKPATH/docker/ui
docker build --no-cache -t opea/chatqna-ui:latest -f docker/Dockerfile .

docker images
}

function start_services() {
cd $WORKPATH/docker/xeon

export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
export TGI_LLM_ENDPOINT="http://${ip_address}:9009"
export PINECONE_API_KEY=${PINECONE_KEY}
export PINECONE_INDEX_NAME="langchain-test"
export INDEX_NAME="langchain-test"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
export RERANK_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/get_file"
export DATAPREP_DELETE_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/delete_file"

sed -i "s/backend_address/$ip_address/g" $WORKPATH/docker/ui/svelte/.env

if [[ "$IMAGE_REPO" != "" ]]; then
# Replace the container name with a test-specific name
echo "using image repository $IMAGE_REPO and image tag $IMAGE_TAG"
sed -i "s#image: opea/chatqna:latest#image: opea/chatqna:${IMAGE_TAG}#g" compose_pinecone.yaml
sed -i "s#image: opea/chatqna-ui:latest#image: opea/chatqna-ui:${IMAGE_TAG}#g" compose_pinecone.yaml
sed -i "s#image: opea/chatqna-conversation-ui:latest#image: opea/chatqna-conversation-ui:${IMAGE_TAG}#g" compose_pinecone.yaml
sed -i "s#image: opea/*#image: ${IMAGE_REPO}opea/#g" compose_pinecone.yaml
cat compose_pinecone.yaml
fi

# Start Docker Containers
docker compose -f compose_pinecone.yaml up -d
n=0
until [[ "$n" -ge 200 ]]; do
docker logs tgi-service > tgi_service_start.log
if grep -q Connected tgi_service_start.log; then
break
fi
sleep 1s
n=$((n+1))
done
}

function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"

local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."

local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)

if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
sleep 1s
}

function validate_microservices() {
# Check if the microservices are running correctly.

# tei for embedding service
validate_services \
"${ip_address}:6006/embed" \
"\[\[" \
"tei-embedding" \
"tei-embedding-server" \
'{"inputs":"What is Deep Learning?"}'

# embedding microservice
validate_services \
"${ip_address}:6000/v1/embeddings" \
'"text":"What is Deep Learning?","embedding":\[' \
"embedding" \
"embedding-tei-server" \
'{"text":"What is Deep Learning?"}'

sleep 1m # retrieval can't curl as expected, try to wait for more time

# retrieval microservice
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
validate_services \
"${ip_address}:7000/v1/retrieval" \
" " \
"retrieval" \
"retriever-pinecone-server" \
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"

# tei for rerank microservice
validate_services \
"${ip_address}:8808/rerank" \
'{"index":1,"score":' \
"tei-rerank" \
"tei-reranking-server" \
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'

# rerank microservice
validate_services \
"${ip_address}:8000/v1/reranking" \
"Deep learning is..." \
"rerank" \
"reranking-tei-xeon-server" \
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'

# tgi for llm service
validate_services \
"${ip_address}:9009/generate" \
"generated_text" \
"tgi-llm" \
"tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'

# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/completions" \
"data: " \
"llm" \
"llm-tgi-server" \
'{"query":"What is Deep Learning?"}'

}

function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:8888/v1/chatqna" \
"billion" \
"mega-chatqna" \
"chatqna-xeon-backend-server" \
'{"messages": "What is the revenue of Nike in 2023?"}'

}

function validate_frontend() {
cd $WORKPATH/docker/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
# conda remove -n ${conda_env_name} --all -y
# conda create -n ${conda_env_name} python=3.12 -y
source activate ${conda_env_name}

sed -i "s/localhost/$ip_address/g" playwright.config.ts

# conda install -c conda-forge nodejs -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list

exit_status=0
npx playwright test || exit_status=$?

if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}

function stop_docker() {
cd $WORKPATH/docker/xeon
docker compose stop && docker compose rm -f
}

function main() {

stop_docker
if [[ "$IMAGE_REPO" == "" ]]; then build_docker_images; fi
start_time=$(date +%s)
start_services
end_time=$(date +%s)
duration=$((end_time-start_time))
echo "Mega service start duration is $duration s" && sleep 1s

validate_microservices
validate_megaservice
validate_frontend

stop_docker
echo y | docker system prune

}

main

0 comments on commit b3c2e3f

Please sign in to comment.