Skip to content

Latest commit

 

History

History
69 lines (47 loc) · 1.76 KB

README.md

File metadata and controls

69 lines (47 loc) · 1.76 KB

Dataprep Microservice with Pinecone

🚀Start Microservice with Python

Install Requirements

pip install -r requirements.txt

Start Pinecone Server

Please refer to this readme.

Setup Environment Variables

export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export PINECONE_API_KEY=${PINECONE_API_KEY}
export PINECONE_INDEX_NAME=${PINECONE_INDEX_NAME}

Start Document Preparation Microservice for Pinecone with Python Script

Start document preparation microservice for Pinecone with below command.

python prepare_doc_pinecone.py

🚀Start Microservice with Docker

Build Docker Image

cd ../../../../
docker build -t opea/dataprep-pinecone:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/pinecone/docker/Dockerfile .

Run Docker with CLI

docker run -d --name="dataprep-pinecone-server" -p 6000:6000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy opea/dataprep-pinecone:latest

Setup Environment Variables

export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export PINECONE_API_KEY=${PINECONE_API_KEY}
export PINECONE_INDEX_NAME=${PINECONE_INDEX_NAME}

Run Docker with Docker Compose

cd comps/dataprep/pinecone/docker
docker compose -f docker-compose-dataprep-pinecone.yaml up -d

Invoke Microservice

Once document preparation microservice for Pinecone is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database.

curl -X POST -H "Content-Type: application/json" -d '{"path":"/path/to/document"}' http://localhost:6000/v1/dataprep