Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "Tenant provisioning in the dataplane" #2691

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 0 additions & 28 deletions backend/danswer/auth/users.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@
from typing import Optional
from typing import Tuple

import jwt
from email_validator import EmailNotValidError
from email_validator import validate_email
from fastapi import APIRouter
Expand Down Expand Up @@ -38,10 +37,8 @@
from danswer.auth.schemas import UserRole
from danswer.auth.schemas import UserUpdate
from danswer.configs.app_configs import AUTH_TYPE
from danswer.configs.app_configs import DATA_PLANE_SECRET
from danswer.configs.app_configs import DISABLE_AUTH
from danswer.configs.app_configs import EMAIL_FROM
from danswer.configs.app_configs import EXPECTED_API_KEY
from danswer.configs.app_configs import REQUIRE_EMAIL_VERIFICATION
from danswer.configs.app_configs import SESSION_EXPIRE_TIME_SECONDS
from danswer.configs.app_configs import SMTP_PASS
Expand Down Expand Up @@ -508,28 +505,3 @@ async def current_admin_user(user: User | None = Depends(current_user)) -> User
def get_default_admin_user_emails_() -> list[str]:
# No default seeding available for Danswer MIT
return []


async def control_plane_dep(request: Request) -> None:
api_key = request.headers.get("X-API-KEY")
if api_key != EXPECTED_API_KEY:
logger.warning("Invalid API key")
raise HTTPException(status_code=401, detail="Invalid API key")

auth_header = request.headers.get("Authorization")
if not auth_header or not auth_header.startswith("Bearer "):
logger.warning("Invalid authorization header")
raise HTTPException(status_code=401, detail="Invalid authorization header")

token = auth_header.split(" ")[1]
try:
payload = jwt.decode(token, DATA_PLANE_SECRET, algorithms=["HS256"])
if payload.get("scope") != "tenant:create":
logger.warning("Insufficient permissions")
raise HTTPException(status_code=403, detail="Insufficient permissions")
except jwt.ExpiredSignatureError:
logger.warning("Token has expired")
raise HTTPException(status_code=401, detail="Token has expired")
except jwt.InvalidTokenError:
logger.warning("Invalid token")
raise HTTPException(status_code=401, detail="Invalid token")
237 changes: 118 additions & 119 deletions backend/danswer/chat/load_yamls.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from danswer.configs.chat_configs import PERSONAS_YAML
from danswer.configs.chat_configs import PROMPTS_YAML
from danswer.db.document_set import get_or_create_document_set_by_name
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.input_prompt import insert_input_prompt_if_not_exists
from danswer.db.models import DocumentSet as DocumentSetDBModel
from danswer.db.models import Persona
Expand All @@ -17,150 +18,148 @@
from danswer.search.enums import RecencyBiasSetting


def load_prompts_from_yaml(
db_session: Session, prompts_yaml: str = PROMPTS_YAML
) -> None:
def load_prompts_from_yaml(prompts_yaml: str = PROMPTS_YAML) -> None:
with open(prompts_yaml, "r") as file:
data = yaml.safe_load(file)

all_prompts = data.get("prompts", [])
for prompt in all_prompts:
upsert_prompt(
user=None,
prompt_id=prompt.get("id"),
name=prompt["name"],
description=prompt["description"].strip(),
system_prompt=prompt["system"].strip(),
task_prompt=prompt["task"].strip(),
include_citations=prompt["include_citations"],
datetime_aware=prompt.get("datetime_aware", True),
default_prompt=True,
personas=None,
db_session=db_session,
commit=True,
)
with Session(get_sqlalchemy_engine()) as db_session:
for prompt in all_prompts:
upsert_prompt(
user=None,
prompt_id=prompt.get("id"),
name=prompt["name"],
description=prompt["description"].strip(),
system_prompt=prompt["system"].strip(),
task_prompt=prompt["task"].strip(),
include_citations=prompt["include_citations"],
datetime_aware=prompt.get("datetime_aware", True),
default_prompt=True,
personas=None,
db_session=db_session,
commit=True,
)


def load_personas_from_yaml(
db_session: Session,
personas_yaml: str = PERSONAS_YAML,
default_chunks: float = MAX_CHUNKS_FED_TO_CHAT,
) -> None:
with open(personas_yaml, "r") as file:
data = yaml.safe_load(file)

all_personas = data.get("personas", [])
for persona in all_personas:
doc_set_names = persona["document_sets"]
doc_sets: list[DocumentSetDBModel] = [
get_or_create_document_set_by_name(db_session, name)
for name in doc_set_names
]

# Assume if user hasn't set any document sets for the persona, the user may want
# to later attach document sets to the persona manually, therefore, don't overwrite/reset
# the document sets for the persona
doc_set_ids: list[int] | None = None
if doc_sets:
doc_set_ids = [doc_set.id for doc_set in doc_sets]
else:
doc_set_ids = None

prompt_ids: list[int] | None = None
prompt_set_names = persona["prompts"]
if prompt_set_names:
prompts: list[PromptDBModel | None] = [
get_prompt_by_name(prompt_name, user=None, db_session=db_session)
for prompt_name in prompt_set_names
with Session(get_sqlalchemy_engine()) as db_session:
for persona in all_personas:
doc_set_names = persona["document_sets"]
doc_sets: list[DocumentSetDBModel] = [
get_or_create_document_set_by_name(db_session, name)
for name in doc_set_names
]
if any([prompt is None for prompt in prompts]):
raise ValueError("Invalid Persona configs, not all prompts exist")

if prompts:
prompt_ids = [prompt.id for prompt in prompts if prompt is not None]

p_id = persona.get("id")
tool_ids = []
if persona.get("image_generation"):
image_gen_tool = (
db_session.query(ToolDBModel)
.filter(ToolDBModel.name == "ImageGenerationTool")

# Assume if user hasn't set any document sets for the persona, the user may want
# to later attach document sets to the persona manually, therefore, don't overwrite/reset
# the document sets for the persona
doc_set_ids: list[int] | None = None
if doc_sets:
doc_set_ids = [doc_set.id for doc_set in doc_sets]
else:
doc_set_ids = None

prompt_ids: list[int] | None = None
prompt_set_names = persona["prompts"]
if prompt_set_names:
prompts: list[PromptDBModel | None] = [
get_prompt_by_name(prompt_name, user=None, db_session=db_session)
for prompt_name in prompt_set_names
]
if any([prompt is None for prompt in prompts]):
raise ValueError("Invalid Persona configs, not all prompts exist")

if prompts:
prompt_ids = [prompt.id for prompt in prompts if prompt is not None]

p_id = persona.get("id")
tool_ids = []
if persona.get("image_generation"):
image_gen_tool = (
db_session.query(ToolDBModel)
.filter(ToolDBModel.name == "ImageGenerationTool")
.first()
)
if image_gen_tool:
tool_ids.append(image_gen_tool.id)

llm_model_provider_override = persona.get("llm_model_provider_override")
llm_model_version_override = persona.get("llm_model_version_override")

# Set specific overrides for image generation persona
if persona.get("image_generation"):
llm_model_version_override = "gpt-4o"

existing_persona = (
db_session.query(Persona)
.filter(Persona.name == persona["name"])
.first()
)
if image_gen_tool:
tool_ids.append(image_gen_tool.id)

llm_model_provider_override = persona.get("llm_model_provider_override")
llm_model_version_override = persona.get("llm_model_version_override")

# Set specific overrides for image generation persona
if persona.get("image_generation"):
llm_model_version_override = "gpt-4o"

existing_persona = (
db_session.query(Persona).filter(Persona.name == persona["name"]).first()
)

upsert_persona(
user=None,
persona_id=(-1 * p_id) if p_id is not None else None,
name=persona["name"],
description=persona["description"],
num_chunks=persona.get("num_chunks")
if persona.get("num_chunks") is not None
else default_chunks,
llm_relevance_filter=persona.get("llm_relevance_filter"),
starter_messages=persona.get("starter_messages"),
llm_filter_extraction=persona.get("llm_filter_extraction"),
icon_shape=persona.get("icon_shape"),
icon_color=persona.get("icon_color"),
llm_model_provider_override=llm_model_provider_override,
llm_model_version_override=llm_model_version_override,
recency_bias=RecencyBiasSetting(persona["recency_bias"]),
prompt_ids=prompt_ids,
document_set_ids=doc_set_ids,
tool_ids=tool_ids,
builtin_persona=True,
is_public=True,
display_priority=existing_persona.display_priority
if existing_persona is not None
else persona.get("display_priority"),
is_visible=existing_persona.is_visible
if existing_persona is not None
else persona.get("is_visible"),
db_session=db_session,
)


def load_input_prompts_from_yaml(
db_session: Session, input_prompts_yaml: str = INPUT_PROMPT_YAML
) -> None:

upsert_persona(
user=None,
persona_id=(-1 * p_id) if p_id is not None else None,
name=persona["name"],
description=persona["description"],
num_chunks=persona.get("num_chunks")
if persona.get("num_chunks") is not None
else default_chunks,
llm_relevance_filter=persona.get("llm_relevance_filter"),
starter_messages=persona.get("starter_messages"),
llm_filter_extraction=persona.get("llm_filter_extraction"),
icon_shape=persona.get("icon_shape"),
icon_color=persona.get("icon_color"),
llm_model_provider_override=llm_model_provider_override,
llm_model_version_override=llm_model_version_override,
recency_bias=RecencyBiasSetting(persona["recency_bias"]),
prompt_ids=prompt_ids,
document_set_ids=doc_set_ids,
tool_ids=tool_ids,
builtin_persona=True,
is_public=True,
display_priority=existing_persona.display_priority
if existing_persona is not None
else persona.get("display_priority"),
is_visible=existing_persona.is_visible
if existing_persona is not None
else persona.get("is_visible"),
db_session=db_session,
)


def load_input_prompts_from_yaml(input_prompts_yaml: str = INPUT_PROMPT_YAML) -> None:
with open(input_prompts_yaml, "r") as file:
data = yaml.safe_load(file)

all_input_prompts = data.get("input_prompts", [])
for input_prompt in all_input_prompts:
# If these prompts are deleted (which is a hard delete in the DB), on server startup
# they will be recreated, but the user can always just deactivate them, just a light inconvenience

insert_input_prompt_if_not_exists(
user=None,
input_prompt_id=input_prompt.get("id"),
prompt=input_prompt["prompt"],
content=input_prompt["content"],
is_public=input_prompt["is_public"],
active=input_prompt.get("active", True),
db_session=db_session,
commit=True,
)
with Session(get_sqlalchemy_engine()) as db_session:
for input_prompt in all_input_prompts:
# If these prompts are deleted (which is a hard delete in the DB), on server startup
# they will be recreated, but the user can always just deactivate them, just a light inconvenience
insert_input_prompt_if_not_exists(
user=None,
input_prompt_id=input_prompt.get("id"),
prompt=input_prompt["prompt"],
content=input_prompt["content"],
is_public=input_prompt["is_public"],
active=input_prompt.get("active", True),
db_session=db_session,
commit=True,
)


def load_chat_yamls(
db_session: Session,
prompt_yaml: str = PROMPTS_YAML,
personas_yaml: str = PERSONAS_YAML,
input_prompts_yaml: str = INPUT_PROMPT_YAML,
) -> None:
load_prompts_from_yaml(db_session, prompt_yaml)
load_personas_from_yaml(db_session, personas_yaml)
load_input_prompts_from_yaml(db_session, input_prompts_yaml)
load_prompts_from_yaml(prompt_yaml)
load_personas_from_yaml(personas_yaml)
load_input_prompts_from_yaml(input_prompts_yaml)
4 changes: 0 additions & 4 deletions backend/danswer/configs/app_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,7 +392,3 @@

MULTI_TENANT = os.environ.get("MULTI_TENANT", "").lower() == "true"
SECRET_JWT_KEY = os.environ.get("SECRET_JWT_KEY", "")


DATA_PLANE_SECRET = os.environ.get("DATA_PLANE_SECRET", "")
EXPECTED_API_KEY = os.environ.get("EXPECTED_API_KEY", "")
3 changes: 1 addition & 2 deletions backend/danswer/db/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ def get_db_current_time(db_session: Session) -> datetime:


# Regular expression to validate schema names to prevent SQL injection
SCHEMA_NAME_REGEX = re.compile(r"^[a-zA-Z0-9_-]+$")
SCHEMA_NAME_REGEX = re.compile(r"^[a-zA-Z_][a-zA-Z0-9_]*$")


def is_valid_schema_name(name: str) -> bool:
Expand Down Expand Up @@ -273,7 +273,6 @@ def get_session_with_tenant(tenant_id: str | None = None) -> Session:
tenant_id = current_tenant_id.get()

if not is_valid_schema_name(tenant_id):
logger.error(f"Invalid tenant ID: {tenant_id}")
raise Exception("Invalid tenant ID")

engine = SqlEngine.get_engine()
Expand Down
Loading
Loading