Deconvolution analysis with the bulk RNA-seq data and single-cell RNA-seq data
### install devtools packages (devtools package)
install.packages("devtools")
### install MOMF package
devtools::install_github("sqsun/MOMF")
The example data (toy_example.Rdata
) is a simulated data.
sc_counts
: scRNA-seq gene expression matrix (#cells x #genes);sc_cell_type
: cell types for scRNA-seq data (#cells x 1);bulk_counts
: bulk RNA-seq gene expression matrix (#individuals x #genes).
Two main functions momf.fit
and momf.computeRef
are used to do deconvoluation analysis.
### load MOMF package
> library(MOMF)
### load example data
> load("toy_example.RData")
### compute the cell type specific expression level as reference
> priorU <- momf.computeRef(sc_counts, sc_cell_type)
### create the gene list for MOMF
> GList <- list(X1 = t(sc_counts), X2 = t(bulk_counts))
### run MOMF
> momf_res <- momf.fit(DataX = GList, DataPriorU=priorU, method="KL", rho=2, num_iter=100)
### output the cell type proportions
> cell_prop <- momf_res$cell.prop
> heatmap(cell_prop)
Xifang Sun, Shiquan Sun, and Sheng Yang. An efficient and flexible method for deconvoluting bulk RNAseq data with single-cell RNAseq data, 2019, DOI: 10.5281/zenodo.3373980.
Please reach out Xifang Sun or Sheng Yang (email: [email protected] or [email protected]) if you have any questions.