Skip to content

This repository contains code for performing segmentation of menisci from 3D MR images

License

Notifications You must be signed in to change notification settings

oliverjm1/BMVC_menisc_seg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Training 3D U-Net and Segment Anything Model (SAM) on MRI Knee Images for Meniscus Segmentation

Repo containing code where SAM was fine-tuned on IWOAI 2019 knee MRI data. A 3D U-Net was also trained as a baseline.

Models, dataset classes, metrics and utility functions are all defined in src.

Train scripts for models are found in scripts folder.

notebooks contains all jupypter notebooks, most of which just test the code contained in the train scripts. Other notebooks are for extracting results from the generated masks (Bland_Altman_Plots.ipynb, Dice_scores.ipynb, Hausdorff_Distance.ipynb)

data folder is empty. Put data here after cloning.

Directory Tree:

.
├── LICENSE
├── README.md
├── data
│   └── data.md
├── knees.yml
├── models
│   └── models.md
├── notebooks
│   ├── Bland_Altman_Plots.ipynb
│   ├── Dice_scores.ipynb
│   ├── Hausdorff_Distance.ipynb
│   ├── convert_to_slices.ipynb
│   ├── run_test_split_through_sam.ipynb
│   ├── test_sam.ipynb
│   ├── test_sam_slice_files.ipynb
│   └── test_unet.ipynb
├── scripts
│   ├── hyperparams_sam.txt
│   ├── hyperparams_unet.txt
│   ├── train_SAM.py
│   ├── train_SAM_slices.py
│   └── train_UNet.py
└── src
    ├── datasets.py
    ├── metrics.py
    ├── model_SAM.py
    ├── model_UNet.py
    └── utils.py

About

This repository contains code for performing segmentation of menisci from 3D MR images

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published