Skip to content

Commit

Permalink
[FIX] fwe docstrings (#868)
Browse files Browse the repository at this point in the history
* make documentation/docstrings consistent

* modify docstrings
  • Loading branch information
jdkent authored Jan 20, 2024
1 parent f414999 commit edbbe19
Show file tree
Hide file tree
Showing 15 changed files with 54 additions and 54 deletions.
2 changes: 1 addition & 1 deletion examples/02_meta-analyses/04_plot_estimators.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@
######################################################################################
# Note that, to measure significance appropriately with the montecarlo method,
# you need a lot more than 10 iterations.
# We recommend 10000 (the default value).
# We recommend 5000 (the default value).
mc_meta = ALE(null_method="montecarlo", n_iters=10, n_cores=1)
mc_results = mc_meta.fit(dset)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@
###############################################################################
# Subtraction analysis
# -----------------------------------------------------------------------------
# Typically, one would use at least 10000 iterations for a subtraction analysis.
# Typically, one would use at least 5000 iterations for a subtraction analysis.
# However, we have reduced this to 100 iterations for this example.
# Similarly here we use a voxel-level z-threshold of 0.01, but in practice one would
# use a more stringent threshold (e.g., 1.65).
Expand Down
4 changes: 2 additions & 2 deletions nimare/annotate/gclda.py
Original file line number Diff line number Diff line change
Expand Up @@ -362,8 +362,8 @@ def fit(self, n_iters=5000, loglikely_freq=10):
Parameters
----------
n_iters : :obj:`int`, optional
Number of iterations to run. Default is 10000.
n_iters : :obj:`int`, default=5000
Number of iterations to run. Default is 5000.
loglikely_freq : :obj:`int`, optional
The frequency with which log-likelihood is updated. Default value
is 1 (log-likelihood is updated every iteration).
Expand Down
4 changes: 2 additions & 2 deletions nimare/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def get_params(self, deep=True):
Parameters
----------
deep : :obj:`bool`, optional
deep : :obj:`bool`, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Expand Down Expand Up @@ -183,7 +183,7 @@ def load(cls, filename, compressed=True):
----------
filename : :obj:`str`
Name of file containing object.
compressed : :obj:`bool`, optional
compressed : :obj:`bool`, default=True
If True, the file is assumed to be compressed and gzip will be used
to load it. Otherwise, it will assume that the file is not
compressed. Default = True.
Expand Down
2 changes: 1 addition & 1 deletion nimare/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def _get_parser():
dest="n_iters",
type=int,
help=("Number of iterations for permutation testing."),
default=10000,
default=5000,
)
macm_parser.add_argument(
"--v_thr",
Expand Down
8 changes: 4 additions & 4 deletions nimare/correct.py
Original file line number Diff line number Diff line change
Expand Up @@ -267,11 +267,11 @@ class FWECorrector(Corrector):
using, use :meth:`inspect`.
voxel_thresh : :obj:`float`, optional
Only used if ``method='montecarlo'``. The uncorrected voxel-level threshold to use.
n_iters : :obj:`int`, optional
n_iters : :obj:`int`, default=5000
Number of iterations to use for Monte Carlo correction.
Default varies by Estimator.
For publication-quality results, 5000 or more iterations are recommended.
n_cores : :obj:`int`, optional
n_cores : :obj:`int`, default=1
Number of cores to use for Monte Carlo correction. Default is 1.
**kwargs
Keyword arguments to be used by the FWE correction implementation.
Expand Down Expand Up @@ -340,12 +340,12 @@ class FDRCorrector(Corrector):
Parameters
----------
method : :obj:`str`, optional
method : :obj:`str`, default='indep'
The FDR correction to use.
Either 'indep' (for independent or positively correlated values) or 'negcorr'
(for general or negatively correlated tests).
Default is 'indep'.
alpha : :obj:`float`, optional
alpha : :obj:`float`, default=0.05
The FDR correction rate to use. Default is 0.05.
Notes
Expand Down
2 changes: 1 addition & 1 deletion nimare/decode/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ def fit(self, dataset, drop_invalid=True):
----------
dataset : :obj:`~nimare.dataset.Dataset`
Dataset object to analyze.
drop_invalid : :obj:`bool`, optional
drop_invalid : :obj:`bool`, default=True
Whether to automatically ignore any studies without the required data or not.
Default is True.
Expand Down
2 changes: 1 addition & 1 deletion nimare/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def _collect_inputs(self, dataset, drop_invalid=True):
Parameters
----------
dataset : :obj:`~nimare.dataset.Dataset`
drop_invalid : :obj:`bool`, optional
drop_invalid : :obj:`bool`, default=True
Whether to automatically drop any studies in the Dataset without valid data or not.
Default is True.
Expand Down
20 changes: 10 additions & 10 deletions nimare/meta/cbma/ale.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,17 +54,17 @@ class ALE(CBMAEstimator):
This method is must slower, and is only slightly more accurate.
======================= =================================================================
n_iters : :obj:`int`, optional
n_iters : :obj:`int`, default=5000
Number of iterations to use to define the null distribution.
This is only used if ``null_method=="montecarlo"``.
Default is 10000.
Default is 5000.
memory : instance of :class:`joblib.Memory`, :obj:`str`, or :class:`pathlib.Path`
Used to cache the output of a function. By default, no caching is done.
If a :obj:`str` is given, it is the path to the caching directory.
memory_level : :obj:`int`, default=0
Rough estimator of the amount of memory used by caching.
Higher value means more memory for caching. Zero means no caching.
n_cores : :obj:`int`, optional
n_cores : :obj:`int`, default=1
Number of cores to use for parallelization.
This is only used if ``null_method=="montecarlo"``.
If <=0, defaults to using all available cores.
Expand Down Expand Up @@ -135,7 +135,7 @@ def __init__(
self,
kernel_transformer=ALEKernel,
null_method="approximate",
n_iters=None,
n_iters=5000,
memory=Memory(location=None, verbose=0),
memory_level=0,
n_cores=1,
Expand Down Expand Up @@ -348,15 +348,15 @@ class ALESubtraction(PairwiseCBMAEstimator):
kernel_transformer : :obj:`~nimare.meta.kernel.KernelTransformer`, optional
Kernel with which to convolve coordinates from dataset.
Default is ALEKernel.
n_iters : :obj:`int`, optional
Default is 10000.
n_iters : :obj:`int`, default=5000
Default is 5000.
memory : instance of :class:`joblib.Memory`, :obj:`str`, or :class:`pathlib.Path`
Used to cache the output of a function. By default, no caching is done.
If a :obj:`str` is given, it is the path to the caching directory.
memory_level : :obj:`int`, default=0
Rough estimator of the amount of memory used by caching.
Higher value means more memory for caching. Zero means no caching.
n_cores : :obj:`int`, optional
n_cores : :obj:`int`, default=1
Number of processes to use for meta-analysis. If -1, use all available cores.
Default is 1.
Expand Down Expand Up @@ -652,9 +652,9 @@ class SCALE(CBMAEstimator):
This parameter was previously incorrectly labeled as "optional" and indicated that
it supports tab-delimited files, which it does not (yet).
n_iters : int, optional
Number of iterations for statistical inference. Default: 10000
n_cores : int, optional
n_iters : int, default=5000
Number of iterations for statistical inference. Default: 5000
n_cores : int, default=1
Number of processes to use for meta-analysis. If -1, use all available cores.
Default: 1
kernel_transformer : :obj:`~nimare.meta.kernel.KernelTransformer`, optional
Expand Down
12 changes: 6 additions & 6 deletions nimare/meta/cbma/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -402,7 +402,7 @@ def _p_to_summarystat(self, p, null_method=None):

return ss

def _compute_null_reduced_montecarlo(self, ma_maps, n_iters=10000):
def _compute_null_reduced_montecarlo(self, ma_maps, n_iters=5000):
"""Compute uncorrected null distribution using the reduced montecarlo method.
This method is much faster than the full montecarlo approach, but is still slower than the
Expand Down Expand Up @@ -615,15 +615,15 @@ def correct_fwe_montecarlo(
----------
result : :obj:`~nimare.results.MetaResult`
Result object from a CBMA meta-analysis.
voxel_thresh : :obj:`float`, optional
voxel_thresh : :obj:`float`, default=0.001
Cluster-defining p-value threshold. Default is 0.001.
n_iters : :obj:`int`, optional
n_iters : :obj:`int`, default=5000
Number of iterations to build the voxel-level, cluster-size, and cluster-mass FWE
null distributions. Default is 10000.
n_cores : :obj:`int`, optional
null distributions. Default is 5000.
n_cores : :obj:`int`, default=1
Number of cores to use for parallelization.
If <=0, defaults to using all available cores. Default is 1.
vfwe_only : :obj:`bool`, optional
vfwe_only : :obj:`bool`, default=False
If True, only calculate the voxel-level FWE-corrected maps. Voxel-level correction
can be performed very quickly if the Estimator's ``null_method`` was "montecarlo".
Default is False.
Expand Down
26 changes: 13 additions & 13 deletions nimare/meta/cbma/mkda.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,10 +58,10 @@ class MKDADensity(CBMAEstimator):
This method is must slower, and is only slightly more accurate.
======================= =================================================================
n_iters : int, optional
n_iters : int, default=5000
Number of iterations to use to define the null distribution.
This is only used if ``null_method=="montecarlo"``.
Default is 10000.
Default is 5000.
memory : instance of :class:`joblib.Memory`, :obj:`str`, or :class:`pathlib.Path`
Used to cache the output of a function. By default, no caching is done.
If a :obj:`str` is given, it is the path to the caching directory.
Expand Down Expand Up @@ -135,7 +135,7 @@ def __init__(
self,
kernel_transformer=MKDAKernel,
null_method="approximate",
n_iters=None,
n_iters=5000,
memory=Memory(location=None, verbose=0),
memory_level=0,
n_cores=1,
Expand All @@ -156,7 +156,7 @@ def __init__(
**kwargs,
)
self.null_method = null_method
self.n_iters = None if null_method == "approximate" else n_iters or 10000
self.n_iters = None if null_method == "approximate" else n_iters or 5000
self.n_cores = _check_ncores(n_cores)
self.dataset = None

Expand Down Expand Up @@ -322,7 +322,7 @@ class MKDAChi2(PairwiseCBMAEstimator):
kernel_transformer : :obj:`~nimare.meta.kernel.KernelTransformer`, optional
Kernel with which to convolve coordinates from dataset. Default is
:class:`~nimare.meta.kernel.MKDAKernel`.
prior : float, optional
prior : float, default=0.5
Uniform prior probability of each feature being active in a map in
the absence of evidence from the map. Default: 0.5
memory : instance of :class:`joblib.Memory`, :obj:`str`, or :class:`pathlib.Path`
Expand Down Expand Up @@ -732,12 +732,12 @@ def correct_fwe_montecarlo(self, result, voxel_thresh=0.001, n_iters=1000, n_cor
----------
result : :obj:`~nimare.results.MetaResult`
Result object from a KDA meta-analysis.
voxel_thresh : :obj:`float`, optional
voxel_thresh : :obj:`float`, default=0.001
Voxel-level threshold. Default is 0.001.
n_iters : :obj:`int`, optional
n_iters : :obj:`int`, default=1000
Number of iterations to build the vFWE null distribution.
Default is 5000.
n_cores : :obj:`int`, optional
Default is 1000.
n_cores : :obj:`int`, default=1
Number of cores to use for parallelization.
If <=0, defaults to using all available cores. Default is 1.
Expand Down Expand Up @@ -1057,17 +1057,17 @@ class KDA(CBMAEstimator):
This method is must slower, and is only slightly more accurate.
======================= =================================================================
n_iters : int, optional
n_iters : int, default=5000
Number of iterations to use to define the null distribution.
This is only used if ``null_method=="montecarlo"``.
Default is 10000.
Default is 5000.
memory : instance of :class:`joblib.Memory`, :obj:`str`, or :class:`pathlib.Path`
Used to cache the output of a function. By default, no caching is done.
If a :obj:`str` is given, it is the path to the caching directory.
memory_level : :obj:`int`, default=0
Rough estimator of the amount of memory used by caching.
Higher value means more memory for caching. Zero means no caching.
n_cores : :obj:`int`, optional
n_cores : :obj:`int`, default=1
Number of cores to use for parallelization.
This is only used if ``null_method=="montecarlo"``.
If <=0, defaults to using all available cores.
Expand Down Expand Up @@ -1139,7 +1139,7 @@ def __init__(
self,
kernel_transformer=KDAKernel,
null_method="approximate",
n_iters=None,
n_iters=5000,
memory=Memory(location=None, verbose=0),
memory_level=0,
n_cores=1,
Expand Down
8 changes: 4 additions & 4 deletions nimare/meta/ibma.py
Original file line number Diff line number Diff line change
Expand Up @@ -1321,7 +1321,7 @@ def _fit(self, dataset):

return maps, {}, description

def correct_fwe_montecarlo(self, result, n_iters=1000, n_cores=1):
def correct_fwe_montecarlo(self, result, n_iters=5000, n_cores=1):
"""Perform FWE correction using the max-value permutation method.
.. versionchanged:: 0.0.8
Expand All @@ -1336,10 +1336,10 @@ def correct_fwe_montecarlo(self, result, n_iters=1000, n_cores=1):
----------
result : :obj:`~nimare.results.MetaResult`
Result object from an ALE meta-analysis.
n_iters : :obj:`int`, optional
n_iters : :obj:`int`, default=5000
The number of iterations to run in estimating the null distribution.
Default is 10000.
n_cores : :obj:`int`, optional
Default is 5000.
n_cores : :obj:`int`, default=1
Number of cores to use for parallelization.
If <=0, defaults to using all available cores. Default is 1.
Expand Down
8 changes: 4 additions & 4 deletions nimare/meta/kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -384,9 +384,9 @@ class KDAKernel(KernelTransformer):
Parameters
----------
r : :obj:`int`, optional
r : :obj:`int`, default=10
Sphere radius, in mm.
value : :obj:`int`, optional
value : :obj:`int`, default=1
Value for sphere.
memory : instance of :class:`joblib.Memory`, :obj:`str`, or :class:`pathlib.Path`
Used to cache the output of a function. By default, no caching is done.
Expand Down Expand Up @@ -468,9 +468,9 @@ class MKDAKernel(KDAKernel):
Parameters
----------
r : :obj:`int`, optional
r : :obj:`int`, default=10
Sphere radius, in mm.
value : :obj:`int`, optional
value : :obj:`int`, default=1
Value for sphere.
memory : instance of :class:`joblib.Memory`, :obj:`str`, or :class:`pathlib.Path`
Used to cache the output of a function. By default, no caching is done.
Expand Down
6 changes: 3 additions & 3 deletions nimare/workflows/cbma.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,14 @@ class CBMAWorkflow(Workflow):
Parameters
----------
estimator : :class:`~nimare.meta.cbma.base.CBMAEstimator`, :obj:`str` {'ale', 'scale', \
'mkdadensity', 'kda'}, or optional
'mkdadensity', 'kda'}, optional
Meta-analysis estimator. Default is :class:`~nimare.meta.cbma.ale.ALE`.
corrector : :class:`~nimare.correct.Corrector`, :obj:`str` {'montecarlo', 'fdr', \
'bonferroni'} or optional
'bonferroni'}, optional
Meta-analysis corrector. Default is :class:`~nimare.correct.FWECorrector`.
diagnostics : :obj:`list` of :class:`~nimare.diagnostics.Diagnostics`, \
:class:`~nimare.diagnostics.Diagnostics`, :obj:`str` {'jackknife', 'focuscounter'}, \
or optional
optional
List of meta-analysis diagnostic classes. A single diagnostic class can also be passed.
Default is :class:`~nimare.diagnostics.FocusCounter`.
voxel_thresh : :obj:`float` or None, optional
Expand Down
2 changes: 1 addition & 1 deletion nimare/workflows/macm.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ def macm_workflow(
mask_file,
output_dir=None,
prefix=None,
n_iters=10000,
n_iters=5000,
v_thr=0.001,
n_cores=1,
):
Expand Down

0 comments on commit edbbe19

Please sign in to comment.