Skip to content

full_layer_type

Ned Taylor edited this page Mar 10, 2024 · 4 revisions
full_layer_type(
   num_outputs,
   num_inputs,
   num_addit_inputs,
   batch_size,
   activation_function="none",
   activation_scale=1.0,
   kernel_initialiser=empty,
   bias_initialiser=empty
)

The full_layer_type derived type provides a fully-connected (aka dense) layer. The layer contains num_inputs number of input features.

This layer creates a fully- (densely-) connected layer, a standard neural network layer.

Arguments

  • num_outputs: Positive integer. Number of output neurons (dimensionality of output space).
  • num_inputs: Integer. Number of input neurons. Defaults to number of outputs of previous layer.
  • num_addit_inputs: Positive integer. Number of additional inputs to this layer that have been exempt from entering previous layers.
  • batch_size: Integer. The number samples in a batch. This is optional (the enclosing network structure can handle it instead).
  • activation_function: Activation function for the layer (see Activation Functions).
  • activation_scale: A real scalar. Defaults to 1.0.
  • kernel_initialiser: Initialiser for the kernel weights (see Initialisers).
  • bias_initialiser: Initialiser for the biases (see Initialisers).