-
Notifications
You must be signed in to change notification settings - Fork 2
full_layer_type
Ned Taylor edited this page Mar 10, 2024
·
4 revisions
full_layer_type(
num_outputs,
num_inputs,
num_addit_inputs,
batch_size,
activation_function="none",
activation_scale=1.0,
kernel_initialiser=empty,
bias_initialiser=empty
)
The full_layer_type
derived type provides a fully-connected (aka dense) layer. The layer contains num_inputs
number of input features.
This layer creates a fully- (densely-) connected layer, a standard neural network layer.
- num_outputs: Positive integer. Number of output neurons (dimensionality of output space).
- num_inputs: Integer. Number of input neurons. Defaults to number of outputs of previous layer.
- num_addit_inputs: Positive integer. Number of additional inputs to this layer that have been exempt from entering previous layers.
- batch_size: Integer. The number samples in a batch. This is optional (the enclosing network structure can handle it instead).
- activation_function: Activation function for the layer (see Activation Functions).
-
activation_scale: A real scalar. Defaults to
1.0
. - kernel_initialiser: Initialiser for the kernel weights (see Initialisers).
- bias_initialiser: Initialiser for the biases (see Initialisers).