Skip to content

moured/YOLOv10-Document-Layout-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv10 - Document Layout Analysis

 

🚀 Check Out Our Recent Trained Model: Yolov11, is now available with live demo! 🎉

Updates 🔥

I have trained YOLOv10 on the DocLayNet dataset for this project. Below is the results table. Feel free to use our fine-tuned models, and please remember to cite YOLOv10, DocLayNet, and our repository. If you find this repository useful, don't forget to give it a 🌟!

About 📋

The models were fine-tuned using 4xA100 GPUs on the Doclaynet-base dataset, which consists of 69103 training images, 6480 validation images, and 4994 test images.

Results 📊

Model mAP50 mAP50-95 Model Weights
YOLOv11-x 0.924 0.755 Repo
YOLOv10-x 0.924 0.740 Download
YOLOv10-b 0.922 0.732 Download
YOLOv10-l 0.921 0.732 Download
YOLOv10-m 0.917 0.737 Download
YOLOv10-s 0.905 0.713 Download
YOLOv10-n 0.892 0.685 Download

Installation 💻

conda create -n yolov10 python=3.9
conda activate yolov10
git clone https://github.com/THU-MIG/yolov10.git
cd yolov10
pip install -r requirements.txt
pip install -e .

References 📝

  1. YOLOv10
BibTeX
@article{wang2024yolov10,
  title={YOLOv10: Real-Time End-to-End Object Detection},
  author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
  journal={arXiv preprint arXiv:2405.14458},
  year={2024}
}
  1. DocLayNet
@article{doclaynet2022,
  title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis},  
  doi = {10.1145/3534678.353904},
  url = {https://arxiv.org/abs/2206.01062},
  author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
  year = {2022}
}

Contact

LinkedIn: https://www.linkedin.com/in/omar-moured/