Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add llama3 ft example yamls #1686

Merged
merged 7 commits into from
Dec 5, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 11 additions & 8 deletions mcli/mcli-llama2-finetune.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -21,9 +21,12 @@ compute:

# The below is injected as a YAML file: /mnt/config/parameters.yaml
parameters:
tokenizer_name: meta-llama/Llama-2-7b-hf
max_seq_len: 4096
global_seed: 17
variables:
tokenizer_name: meta-llama/Llama-2-7b-hf
global_seed: 17
max_seq_len: 4096

max_seq_len: ${variables.max_seq_len}

# Run Name
run_name: # If left blank, will be read from env var $RUN_NAME
Expand All @@ -42,17 +45,17 @@ parameters:

# Tokenizer
tokenizer:
name: ${tokenizer_name}
name: ${variables.tokenizer_name}
kwargs:
model_max_length: ${max_seq_len}
model_max_length: ${variables.max_seq_len}

# Dataloaders
train_loader:
name: finetuning
dataset:
hf_name: mosaicml/dolly_hhrlhf
split: train
max_seq_len: ${max_seq_len}
max_seq_len: ${variables.max_seq_len}
allow_pad_trimming: false
decoder_only_format: true
shuffle: true
Expand All @@ -75,7 +78,7 @@ parameters:
dataset:
hf_name: mosaicml/dolly_hhrlhf
split: test
max_seq_len: ${max_seq_len}
max_seq_len: ${variables.max_seq_len}
allow_pad_trimming: false
decoder_only_format: true
# packing_ratio:
Expand Down Expand Up @@ -114,7 +117,7 @@ parameters:
global_train_batch_size: 64

# System
seed: ${global_seed}
seed: ${variables.global_seed}
device_eval_batch_size: 8
device_train_microbatch_size: auto
precision: amp_bf16
Expand Down
158 changes: 158 additions & 0 deletions mcli/mcli-llama3-70b-instruct-finetune.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
integrations:
- integration_type: git_repo
git_repo: mosaicml/llm-foundry
git_branch: v0.15.0
# git_commit: # OR use your commit hash
pip_install: .[gpu]
ssh_clone: false # Should be true if using a private repo

command: |
cd llm-foundry/scripts
composer train/train.py /mnt/config/parameters.yaml
image: mosaicml/llm-foundry:2.5.1_cu124-latest
name: llama3.1-70b-finetune

compute:
# Note: Finetuning the 70b model requires at least 16x80GB GPUs
gpus: 16 # Number of GPUs to use
## These configurations are optional
# cluster: TODO # Name of the cluster to use for this run
# gpu_type: h100_80gb # Type of GPU to use. We use h100_80gb in our experiments

# The below is injected as a YAML file: /mnt/config/parameters.yaml
parameters:
variables:
tokenizer_name: meta-llama/Llama-3.1-70B-Instruct
global_seed: 17
max_seq_len: 4096

max_seq_len: ${variables.max_seq_len}
# Run Name
run_name: # If left blank, will be read from env var $RUN_NAME

max_split_size_mb: 512

# Model
model:
name: hf_causal_lm
init_device: mixed
pretrained_model_name_or_path: meta-llama/Llama-3.1-70B-Instruct
pretrained: true
# Note: you must have set the HF_TOKEN environment variable and have access to the llama2 models
snarayan21 marked this conversation as resolved.
Show resolved Hide resolved
snarayan21 marked this conversation as resolved.
Show resolved Hide resolved
use_auth_token: true
use_flash_attention_2: true

# Tokenizer
tokenizer:
name: ${variables.tokenizer_name}
kwargs:
model_max_length: ${variables.max_seq_len}
# Dataloaders
train_loader:
name: finetuning
dataset:
hf_name: mosaicml/dolly_hhrlhf
split: train
max_seq_len: ${variables.max_seq_len}
allow_pad_trimming: false
decoder_only_format: true
shuffle: true
# # Use packing_ratio: 'auto' to automatically profile and select the highest observed packing ratio with
# # zero waste. In practice, this may result in > 0 waste because profiling is done on only a portion
# # of the dataset.
# # Or use `python llmfoundry/scripts/misc/profile_packing.py --yaml-path /path/to/this/yaml/ ...`
# # to profile this run's optimal packing_ratio as it depends on GPU count,
# # batch size, sequence length
# packing_ratio: auto
drop_last: true
num_workers: 8
pin_memory: false
prefetch_factor: 2
persistent_workers: true
timeout: 0

eval_loader:
name: finetuning
dataset:
hf_name: mosaicml/dolly_hhrlhf
split: test
max_seq_len: ${variables.max_seq_len}
allow_pad_trimming: false
decoder_only_format: true
# packing_ratio:
shuffle: false
drop_last: true
num_workers: 8
pin_memory: false
prefetch_factor: 2
persistent_workers: true
timeout: 0

# Optimization
scheduler:
name: cosine_with_warmup
t_warmup: 100ba
alpha_f: 0.1

# Note: You may want to change learning rate, betas, weight decay
optimizer:
name: decoupled_lionw
lr: 5.0e-7
betas:
- 0.9
- 0.95
weight_decay: 0.0

algorithms:
gradient_clipping:
clipping_type: norm
clipping_threshold: 1.0

max_duration: 1ep
eval_first: false
eval_interval: 1ep
eval_subset_num_batches: -1
global_train_batch_size: 16

# System
seed: ${variables.global_seed}
device_eval_batch_size: 1
device_train_microbatch_size: 1
precision: amp_bf16

# FSDP
fsdp_config:
state_dict_type: sharded # Note: we enable sharded checkpointing to avoid GPU OOM
sharding_strategy: FULL_SHARD
mixed_precision: PURE
activation_checkpointing: true
activation_checkpointing_reentrant: false
activation_cpu_offload: false
limit_all_gathers: true

# Logging
progress_bar: false
log_to_console: true
console_log_interval: 1ba

callbacks:
speed_monitor:
window_size: 10
lr_monitor: {}
memory_monitor: {}
runtime_estimator: {}

load_weights_only: true # Only load the weights, not the optimizer state, LR schedule, etc

# loggers:
# wandb: {}

# Checkpoint to local filesystem or remote object store
# save_interval: 2000ba
# save_num_checkpoints_to_keep: 1 # Important, this cleans up checkpoints saved to DISK
# save_folder: ./{run_name}/checkpoints
# save_folder: s3://my-bucket/my-folder/{run_name}/checkpoints

# Load from local filesystem or remote object store
# load_path: ./gpt-1b/checkpoints/latest-rank{rank}.pt
# load_path: s3://my-bucket/my-folder/gpt-1b/checkpoints/latest-rank{rank}.pt
Loading