-
Notifications
You must be signed in to change notification settings - Fork 533
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Allow parameters with requires_grad=False in meta init (#1567)
Co-authored-by: Mihir Patel <[email protected]>
- Loading branch information
1 parent
f87c9da
commit 7c6c9f1
Showing
2 changed files
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# Copyright 2024 MosaicML LLM Foundry authors | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Callable | ||
|
||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
|
||
from llmfoundry.models.utils import init_empty_weights, init_on_device | ||
|
||
|
||
class ModelWithIntParameter(nn.Module): | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.int_param = nn.Parameter( | ||
torch.tensor(0, dtype=torch.int64), | ||
requires_grad=False, | ||
) | ||
self.float_param = nn.Parameter(torch.randn(10), requires_grad=True) | ||
|
||
def forward(self, x: torch.Tensor): | ||
return x | ||
|
||
|
||
def test_init_empty_weights(build_tiny_mpt: Callable,): | ||
# Initialize a model on CPU for comparison | ||
cpu_model = build_tiny_mpt(loss_fn='torch_crossentropy') | ||
|
||
with init_empty_weights(): | ||
meta_model = build_tiny_mpt(loss_fn='torch_crossentropy') | ||
|
||
for (cpu_name, cpu_param), (meta_name, meta_param) in zip( | ||
cpu_model.named_parameters(), | ||
meta_model.named_parameters(), | ||
): | ||
assert cpu_name == meta_name, f'Parameter names do not match: {cpu_name} vs {meta_name}' | ||
assert cpu_param.shape == meta_param.shape, f'Shape mismatch for {cpu_name}: {cpu_param.shape} vs {meta_param.shape}' | ||
assert meta_param.device == torch.device( | ||
'meta', | ||
), f'Parameter {meta_name} is not on meta device' | ||
assert cpu_param.dtype == meta_param.dtype, f'Dtype mismatch for {cpu_name}: {cpu_param.dtype} vs {meta_param.dtype}' | ||
assert cpu_param.requires_grad == meta_param.requires_grad, f'requires_grad mismatch for {cpu_name}' | ||
|
||
|
||
def test_init_empty_weights_with_buffers(): | ||
with init_empty_weights(include_buffers=True): | ||
model = nn.BatchNorm1d(10) | ||
|
||
assert model.running_mean is not None | ||
assert model.running_var is not None | ||
assert model.num_batches_tracked is not None | ||
|
||
assert model.running_mean.device == torch.device('meta') | ||
assert model.running_var.device == torch.device('meta') | ||
assert model.num_batches_tracked.device == torch.device('meta') | ||
|
||
|
||
@pytest.mark.gpu | ||
def test_init_on_device(build_tiny_mpt: Callable,): | ||
device = torch.device('cuda') | ||
with init_on_device(device): | ||
model = build_tiny_mpt() | ||
|
||
for name, param in model.named_parameters(): | ||
assert param.device.type == device.type, f'Parameter {name} is not on a CUDA device' | ||
assert param.dtype == torch.float32, f'Parameter {name} is not float32' | ||
|
||
|
||
@pytest.mark.gpu | ||
def test_init_on_device_with_buffers(): | ||
device = torch.device('cuda') | ||
with init_on_device(device, include_buffers=True): | ||
model = nn.BatchNorm1d(10) | ||
|
||
assert model.running_mean is not None | ||
assert model.running_var is not None | ||
assert model.num_batches_tracked is not None | ||
|
||
assert model.running_mean.device.type == device.type | ||
assert model.running_var.device.type == device.type | ||
assert model.num_batches_tracked.device.type == device.type | ||
|
||
|
||
@pytest.mark.gpu | ||
def test_init_on_device_int_parameter(): | ||
device = torch.device('cuda') | ||
with init_on_device(device): | ||
model = ModelWithIntParameter() | ||
|
||
assert model.int_param.device.type == device.type, 'Int parameter should be on a CUDA device' | ||
assert model.int_param.dtype == torch.int64, 'Parameter dtype should be int64' | ||
assert not model.int_param.requires_grad, 'Int parameter should not require gradients' | ||
|
||
assert model.float_param.device.type == device.type, 'Float parameter should be on a CUDA device' | ||
assert model.float_param.dtype == torch.float32, 'Float parameter should be float32' | ||
assert model.float_param.requires_grad, 'Float parameter should require gradients' | ||
|
||
|
||
if __name__ == '__main__': | ||
pytest.main([__file__]) |