-
Notifications
You must be signed in to change notification settings - Fork 536
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add convert_dataset_json to CLI (#1349)
* convert_dataset_json * cli * rename * precommit * rename * commit comments 1 * precommit * annotation * help * update annotation * fix imports * missing init * precommit * precommit --------- Co-authored-by: v-chen_data <[email protected]>
- Loading branch information
Showing
6 changed files
with
304 additions
and
183 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
222 changes: 222 additions & 0 deletions
222
llmfoundry/command_utils/data_prep/convert_dataset_json.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
# Copyright 2022 MosaicML LLM Foundry authors | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
"""Streaming dataset conversion scripts for json files.""" | ||
import os | ||
from enum import Enum | ||
from glob import glob | ||
from typing import Optional | ||
|
||
import datasets as hf_datasets | ||
from streaming import MDSWriter | ||
from torch.utils.data import IterableDataset | ||
from tqdm import tqdm | ||
from transformers import AutoTokenizer, PreTrainedTokenizerBase | ||
|
||
from llmfoundry.data import ConcatTokensDataset, NoConcatDataset | ||
|
||
|
||
class ConcatMode(Enum): | ||
NO_CONCAT = 'NO_CONCAT' | ||
CONCAT_TOKENS = 'CONCAT_TOKENS' | ||
|
||
|
||
def build_hf_dataset( | ||
path: str, | ||
split: str, | ||
mode: ConcatMode, | ||
max_length: Optional[int] = None, | ||
bos_text: str = '', | ||
eos_text: str = '', | ||
no_wrap: bool = False, | ||
tokenizer: PreTrainedTokenizerBase = None, | ||
) -> IterableDataset: | ||
"""Build an IterableDataset over the HF C4 or pile source data. | ||
Args: | ||
dataset_name (str): Dataset name | ||
split (str): Split name. | ||
mode (ConcatMode): NO_CONCAT, or CONCAT_TOKENS | ||
max_length (int): The length of concatenated tokens | ||
bos_text (str): text to insert at the beginning of each sequence | ||
eos_text (str): text to insert at the end of each sequence | ||
no_wrap (bool): if concatenating, whether to wrap text across `max_length` boundaries | ||
tokenizer (PreTrainedTokenizerBase): if mode is CONCAT_TOKENS, the tokenizer to use | ||
data_subset (str): Referred to as "name" in HuggingFace datasets.load_dataset. | ||
Typically "all" (The Pile) or "en" (c4). | ||
Returns: | ||
An IterableDataset. | ||
""" | ||
if os.path.isdir(path): | ||
data_files = glob(f'{path}/*') | ||
else: | ||
data_files = path | ||
|
||
hf_dataset = hf_datasets.load_dataset( | ||
'json', | ||
data_files=data_files, | ||
split=split, | ||
) | ||
|
||
if mode == ConcatMode.NO_CONCAT: | ||
dataset = NoConcatDataset(hf_dataset) | ||
else: | ||
if not isinstance(tokenizer, PreTrainedTokenizerBase): | ||
raise ValueError( | ||
f'{tokenizer=} must be of type PreTrainedTokenizerBase', | ||
) | ||
if max_length is None: | ||
raise ValueError(f'max_length must be set.') | ||
if bos_text + eos_text == '': | ||
test_tokens = tokenizer('test') | ||
if test_tokens['input_ids'][ | ||
0] != tokenizer.bos_token_id and test_tokens['input_ids'][ | ||
-1] != tokenizer.eos_token_id: | ||
tok_error_msg = 'This tokenizer does not insert an EOS nor BOS token. ' | ||
tok_error_msg += 'Concatenating with this tokenizer will result in sequences being ' | ||
tok_error_msg += 'attached without a separating token. Please use another tokenizer, ' | ||
tok_error_msg += 'such as facebook/opt-125m, or specify EOS/BOS text with e.g. ' | ||
tok_error_msg += '--bos_text=<|endoftext|>.' | ||
raise ValueError(tok_error_msg) | ||
dataset = ConcatTokensDataset( | ||
hf_dataset=hf_dataset, | ||
tokenizer=tokenizer, | ||
max_length=max_length, | ||
bos_text=bos_text, | ||
eos_text=eos_text, | ||
no_wrap=no_wrap, | ||
) | ||
return dataset | ||
|
||
|
||
def convert_dataset_json( | ||
path: str, | ||
out_root: str, | ||
compression: Optional[str], | ||
concat_tokens: Optional[int], | ||
split: str, | ||
tokenizer: Optional[str] = None, | ||
bos_text: str = '', | ||
eos_text: str = '', | ||
no_wrap: bool = False, | ||
num_workers: Optional[int] = None, | ||
) -> None: | ||
"""Create C4/pile streaming dataset. | ||
Args: | ||
path (str): Path to the input data file | ||
out_root (str): Output root directory | ||
compression (Optional[str]): Compression type, if any | ||
concat_tokens (Optional[int]): Convert text to tokens and concatenate up to this many tokens | ||
split (str): Dataset split to process | ||
tokenizer (Optional[str]): Tokenizer name | ||
bos_text (str): Text to insert at the beginning of each sequence | ||
eos_text (str): Text to insert at the end of each sequence | ||
no_wrap (bool): Do not wrap text across max_length boundaries | ||
num_workers (Optional[int]): Number of workers for data loading | ||
""" | ||
if concat_tokens is not None: | ||
mode = ConcatMode.CONCAT_TOKENS | ||
built_tokenizer = AutoTokenizer.from_pretrained(tokenizer) | ||
# we will enforce length, so suppress warnings about sequences too long for the model | ||
built_tokenizer.model_max_length = int(1e30) | ||
columns = {'tokens': 'ndarray:int32'} | ||
else: | ||
mode = ConcatMode.NO_CONCAT | ||
built_tokenizer = None | ||
columns = {'text': 'str'} | ||
|
||
# Get samples | ||
dataset = build_hf_dataset( | ||
path=path, | ||
split=split, | ||
mode=mode, | ||
max_length=concat_tokens, | ||
bos_text=bos_text, | ||
eos_text=eos_text, | ||
no_wrap=no_wrap, | ||
tokenizer=built_tokenizer, | ||
) | ||
|
||
print('here') | ||
|
||
# Write samples | ||
print(f'Converting to MDS format...') | ||
print( | ||
f'Note that the progress bar is based on the dataset length before tokenization.', | ||
) | ||
print(f'It will finish at a value below 100% if tokenizing') | ||
with MDSWriter( | ||
columns=columns, | ||
out=os.path.join(out_root), | ||
compression=compression, | ||
) as out: | ||
for sample in tqdm(dataset): | ||
out.write(sample) | ||
|
||
|
||
def convert_dataset_json_from_args( | ||
path: str, | ||
out_root: str, | ||
compression: Optional[str], | ||
concat_tokens: Optional[int], | ||
split: str, | ||
tokenizer: Optional[str] = None, | ||
bos_text: Optional[str] = None, | ||
eos_text: Optional[str] = None, | ||
no_wrap: bool = False, | ||
num_workers: Optional[int] = None, | ||
) -> None: | ||
"""A wrapper for `convert_dataset_json` that parses arguments. | ||
Args: | ||
path (str): Path to the input data file | ||
out_root (str): Output root directory | ||
compression (Optional[str]): Compression type, if any | ||
concat_tokens (Optional[int]): Convert text to tokens and concatenate up to this many tokens | ||
split (str): Dataset split to process | ||
tokenizer (Optional[str]): Tokenizer name | ||
bos_text (Optional[str]): Text to insert at the beginning of each sequence | ||
eos_text (Optional[str]): Text to insert at the end of each sequence | ||
no_wrap (bool): Do not wrap text across max_length boundaries | ||
num_workers (Optional[int]): Number of workers for data loading | ||
Raises: | ||
ValueError: If the out_root directory exists and contains files that overlap with the requested splits | ||
ValueError: If concat_tokens is set and a tokenizer is not provided | ||
""" | ||
if os.path.isdir(out_root) and len( | ||
set(os.listdir(out_root)).intersection(set(split)), | ||
) > 0: | ||
raise ValueError( | ||
f'--out_root={out_root} contains {os.listdir(out_root)} which cannot overlap with the requested splits {split}.', | ||
) | ||
|
||
# Make sure we have needed concat options | ||
if ( | ||
concat_tokens is not None and isinstance(concat_tokens, int) and | ||
tokenizer is None | ||
): | ||
ValueError( | ||
'When setting --concat_tokens, you must specify a --tokenizer', | ||
) | ||
|
||
# now that we have validated them, change BOS/EOS to strings | ||
if bos_text is None: | ||
bos_text = '' | ||
if eos_text is None: | ||
eos_text = '' | ||
|
||
convert_dataset_json( | ||
path=path, | ||
out_root=out_root, | ||
compression=compression, | ||
concat_tokens=concat_tokens, | ||
split=split, | ||
tokenizer=tokenizer, | ||
bos_text=bos_text, | ||
eos_text=eos_text, | ||
no_wrap=no_wrap, | ||
num_workers=num_workers, | ||
) |
Oops, something went wrong.