-
Notifications
You must be signed in to change notification settings - Fork 534
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into elastic-resumption-regtest
- Loading branch information
Showing
20 changed files
with
1,674 additions
and
47 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# Copyright 2022 MosaicML LLM Foundry authors | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from llmfoundry.models.inference_api_wrapper.interface import \ | ||
InferenceAPIEvalWrapper | ||
from llmfoundry.models.inference_api_wrapper.openai_causal_lm import ( | ||
OpenAICausalLMEvalWrapper, OpenAIChatAPIEvalWrapper, OpenAITokenizerWrapper) | ||
|
||
__all__ = [ | ||
'OpenAICausalLMEvalWrapper', | ||
'OpenAIChatAPIEvalWrapper', | ||
'OpenAITokenizerWrapper', | ||
'InferenceAPIEvalWrapper', | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
# Copyright 2022 MosaicML LLM Foundry authors | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Any, Dict, Optional | ||
|
||
import torch | ||
from composer.core.types import Batch | ||
from composer.metrics import InContextLearningMetric | ||
from composer.metrics.nlp import (InContextLearningLMAccuracy, | ||
InContextLearningLMExpectedCalibrationError, | ||
InContextLearningMCExpectedCalibrationError, | ||
InContextLearningMultipleChoiceAccuracy, | ||
InContextLearningQAAccuracy, | ||
LanguageCrossEntropy, LanguagePerplexity) | ||
from composer.models import ComposerModel | ||
from torchmetrics import Metric | ||
from transformers import AutoTokenizer | ||
|
||
|
||
class InferenceAPIEvalWrapper(ComposerModel): | ||
|
||
def __init__(self, model_cfg: Dict, tokenizer: AutoTokenizer): | ||
self.tokenizer = tokenizer | ||
self.labels = None | ||
# set up training and eval metrics | ||
eval_metrics = [ | ||
LanguageCrossEntropy(), | ||
LanguagePerplexity(), | ||
InContextLearningLMAccuracy(), | ||
InContextLearningMultipleChoiceAccuracy(), | ||
InContextLearningQAAccuracy(), | ||
InContextLearningLMExpectedCalibrationError(), | ||
InContextLearningMCExpectedCalibrationError() | ||
] | ||
self.eval_metrics = { | ||
metric.__class__.__name__: metric for metric in eval_metrics | ||
} | ||
super().__init__() | ||
|
||
def get_metrics(self, is_train: bool = False): | ||
if is_train: | ||
raise NotImplementedError( | ||
'You cannot use inference wrappers for training') | ||
else: | ||
metrics = self.eval_metrics | ||
|
||
return metrics if metrics else {} | ||
|
||
def get_next_token_logit_tensor(self, | ||
prompt: str) -> Optional[torch.Tensor]: | ||
raise NotImplementedError | ||
|
||
def rebatch(self, batch: Batch): | ||
# default is a no-op, but Chat API modifies these | ||
return batch | ||
|
||
def eval_forward(self, batch: Batch, outputs: Optional[Any] = None): | ||
# If the batch mode is generate, we will generate a requested number of tokens using the underlying | ||
# model's generate function. Extra generation kwargs can be passed in via the batch. Strings will | ||
# be returned from eval_forward | ||
output_logits_batch = [] | ||
for tokens, cont_idxs in zip(batch['input_ids'], | ||
batch['continuation_indices']): | ||
|
||
seqlen = tokens.shape[0] | ||
tokens = tokens.tolist() | ||
cont_idxs = cont_idxs.tolist() | ||
expected_cont_tokens = tokens[cont_idxs[0]:cont_idxs[-1] + 1] | ||
output_logits = torch.nn.functional.one_hot( | ||
torch.tensor(tokens[1:cont_idxs[0]]), | ||
num_classes=self.tokenizer.vocab_size) | ||
for i in range(len(expected_cont_tokens)): | ||
# decode one token at a time | ||
prompt = self.tokenizer.decode(tokens[:cont_idxs[0]] + | ||
expected_cont_tokens[0:i]) | ||
next_logit_tensor = self.get_next_token_logit_tensor(prompt) | ||
if next_logit_tensor is None: | ||
continue | ||
output_logits = torch.cat( | ||
[output_logits, | ||
next_logit_tensor.reshape(1, -1)]) | ||
padding = torch.nn.functional.one_hot( | ||
torch.full((seqlen - output_logits.shape[0],), | ||
self.tokenizer.pad_token_id), | ||
num_classes=self.tokenizer.vocab_size) | ||
output_logits = torch.cat([output_logits, padding]) | ||
output_logits_batch.append(output_logits) | ||
|
||
return torch.stack(output_logits_batch).to(batch['input_ids'].device) | ||
|
||
def update_metric(self, batch: Any, outputs: Any, metric: Metric) -> None: | ||
batch = self.rebatch(batch) | ||
self.labels = batch.pop('labels') | ||
self.labels[:, :-1] = self.labels[:, 1:].clone() | ||
self.labels[:, -1] = -100 | ||
if isinstance(metric, InContextLearningMetric) and batch.get( | ||
'mode', None) == 'icl_task': | ||
assert self.labels is not None | ||
metric.update(batch, outputs, self.labels) | ||
else: | ||
raise NotImplementedError( | ||
'Inference API wrapper only supports InContextLearningMetrics and mode=icl_task' | ||
) | ||
|
||
def forward(self): | ||
raise NotImplementedError( | ||
"Inference API wrapper doesn't support forward") | ||
|
||
def loss(self): | ||
raise NotImplementedError("Inference API wrapper doesn't support loss") |
Oops, something went wrong.