Skip to content

A repository for single-cell quantification using mask formats generated by Cellpose! This CLI tool enables the analysis of single-cell data by enabling the quantification of signal intensities and cell-specific features from images and corresponding masks.

License

Notifications You must be signed in to change notification settings

milesbailey121/cellpose-quantification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cellpose-Quantification

A repository for single-cell quantification using mask formats generated by Cellpose! This CLI tool enables the analysis of single-cell data by enabling the quantification of signal intensities and cell-specific features from images and corresponding masks.

Alt text

Getting Started

Installing Dependancies

  • Clone this git repository locally
  • Setup Python environment and install packages
pip install -r requirements.txt

Executing program

This program can be run from the command line with the following example command:

python RunQuantification-CLI.py ./path/to/images ./path/to/masks markers.csv 

With Normalisation

python RunQuantification-CLI.py ./path/to/images ./path/to/masks markers.csv --norm log

Expected Parameters

  • ./path/to/image
    • Can take Input from a directory containing tiff images
  • ./path/to/masks
    • Can take a directory .npy, .png, and .tif masks as inputs generated by cellpose
  • markers.csv
    • The path to metadata relating to markers corresponding to each markers, formatted on one row e.g. CD45, DAPI, Ki67, etc
  • --norm
    • An optional parameter which defines a normalisation technique to use, current implementation allows: minmax and log normalisation.

Expected Output

The output is a CSV file containing quantitative information for each segmented cell. Below is an example:

Cell_ID Nuclear CD31 CK5 SMA Ki67 CK8 CCASP3 area centroid-0 centroid-1 perimeter eccentricity solidity orientation Filename
1 12.622871 0.600973 0.571776 0 0.238443 0.002433 0.381995 411 200.211679 697.878345 96.041631 0.959712 0.942661 0.067159 Image_1.tif
2 12.568093 0.256809 0.289883 0 0.114786 0 1.830739 514 244.719844 698.120623 115.213203 0.974378 0.955390 0.045165 Image_1.tif

This table contains:

  • Quantitative marker data (e.g., CD31, CK5, ANXA1, etc.)
  • Morphometric properties (e.g., area, eccentricity, solidity, etc.)
  • Cell metadata, such as coordinates (centroid-0 e.g x-axis, centroid-1 e.g y-axis) and file names (Filename).

Authors

Please cite this git page when using this tool! Miles Bailey
@milesbailey121

About

A repository for single-cell quantification using mask formats generated by Cellpose! This CLI tool enables the analysis of single-cell data by enabling the quantification of signal intensities and cell-specific features from images and corresponding masks.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages