Skip to content

Commit

Permalink
Allow to compile collective for PT>2.3
Browse files Browse the repository at this point in the history
commit re-uploaded due to github CI issue
  • Loading branch information
NirSonnenschein committed Dec 19, 2024
1 parent f9e158a commit f519a89
Showing 1 changed file with 28 additions and 22 deletions.
50 changes: 28 additions & 22 deletions deepspeed/comm/torch.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,12 @@
DS_COMM_REDUCE_OFF = False


def disable_compiler_collective(func):
if required_torch_version(min_version=2.3):
return func
return compiler.disable(func)


def build_shm_op():
builder = get_accelerator().create_op_builder("ShareMemCommBuilder")
if builder is None or not deepspeed.ops.__compatible_ops__[builder.NAME]:
Expand Down Expand Up @@ -114,7 +120,7 @@ def __init__(self, backend, timeout, init_method, rank=-1, world_size=-1, name='
self.shm_comm_op.initialize(self.get_world_size(), self.get_rank())

@classmethod
@compiler.disable
@disable_compiler_collective
def get_all_gather_function(self):
if hasattr(torch.distributed, "all_gather_into_tensor"):
return torch.distributed.all_gather_into_tensor
Expand All @@ -123,7 +129,7 @@ def get_all_gather_function(self):
return None

@classmethod
@compiler.disable
@disable_compiler_collective
def get_reduce_scatter_function(self):
if hasattr(torch.distributed, "reduce_scatter_tensor"):
return torch.distributed.reduce_scatter_tensor
Expand All @@ -146,7 +152,7 @@ def init_process_group(self, backend, timeout, init_method, rank, world_size):
world_size=world_size)
self.using_mpi = torch.distributed.get_backend() == 'mpi'

@compiler.disable
@disable_compiler_collective
def all_reduce(self, tensor, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False):
op = self._reduce_op(op)
return torch.distributed.all_reduce(tensor=tensor, op=op, group=group, async_op=async_op)
Expand All @@ -158,7 +164,7 @@ def inference_all_reduce(self, tensor, op, group=None):
else:
return torch.ops.deepspeed.inference_all_reduce_(tensor)

@compiler.disable
@disable_compiler_collective
def all_reduce_coalesced(self, tensors, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False):
""" proxy func to torch.distributed.all_reduce_coalesced,
which is included in PyTorch 1.13 and above
Expand All @@ -169,15 +175,15 @@ def all_reduce_coalesced(self, tensors, op=torch.distributed.ReduceOp.SUM, group
op = self._reduce_op(op)
return torch.distributed.all_reduce_coalesced(tensors=tensors, op=op, group=group, async_op=async_op)

@compiler.disable
@disable_compiler_collective
def reduce(self, tensor, dst, op=ReduceOp.SUM, group=None, async_op=False):
if DS_COMM_REDUCE_OFF:
if int(os.getenv('RANK', '0')) == 0:
utils.logger.warning("REDUCE is OFF")
return Noop()
return torch.distributed.reduce(tensor=tensor, dst=dst, op=self._reduce_op(op), group=group, async_op=async_op)

@compiler.disable
@disable_compiler_collective
def reduce_scatter(self, output, input_list, op=ReduceOp.SUM, group=None, async_op=False):
if DS_COMM_REDUCE_SCATTER_OFF:
if int(os.getenv('RANK', '0')) == 0:
Expand All @@ -190,7 +196,7 @@ def reduce_scatter(self, output, input_list, op=ReduceOp.SUM, group=None, async_
group=group,
async_op=async_op)

@compiler.disable
@disable_compiler_collective
def broadcast(self, tensor, src, group=None, async_op=False):
if DS_COMM_BROADCAST_OFF:
if int(os.getenv('RANK', '0')) == 0:
Expand All @@ -199,7 +205,7 @@ def broadcast(self, tensor, src, group=None, async_op=False):
else:
return torch.distributed.broadcast(tensor=tensor, src=src, group=group, async_op=async_op)

@compiler.disable
@disable_compiler_collective
def all_gather(self, tensor_list, tensor, group=None, async_op=False):
if DS_COMM_ALL_GATHER_OFF:
if int(os.getenv('RANK', '0')) == 0:
Expand All @@ -208,15 +214,15 @@ def all_gather(self, tensor_list, tensor, group=None, async_op=False):
else:
return torch.distributed.all_gather(tensor_list=tensor_list, tensor=tensor, group=group, async_op=async_op)

@compiler.disable
@disable_compiler_collective
def all_gather_into_tensor(self, output_tensor, input_tensor, group=None, async_op=False):
if self.has_all_gather_into_tensor():
return self.all_gather_function(output_tensor=output_tensor,
input_tensor=input_tensor,
group=group,
async_op=async_op)

@compiler.disable
@disable_compiler_collective
def all_gather_base(self, output_tensor, input_tensor, group=None, async_op=False):
if DS_COMM_ALL_GATHER_OFF:
if int(os.getenv('RANK', '0')) == 0:
Expand All @@ -234,7 +240,7 @@ def all_gather_base(self, output_tensor, input_tensor, group=None, async_op=Fals
"please consider upgrading your pytorch installation.")
pass

@compiler.disable
@disable_compiler_collective
def all_gather_coalesced(self, output_tensors, input_tensors, group=None, async_op=False):
""""""
assert len(output_tensors) == len(input_tensors), ""
Expand All @@ -258,7 +264,7 @@ def all_gather_coalesced(self, output_tensors, input_tensors, group=None, async_
else:
reqs[-1].wait()

@compiler.disable
@disable_compiler_collective
def reduce_scatter_tensor(self, output_tensor, input_tensor, op=ReduceOp.SUM, group=None, async_op=False):
if self.has_reduce_scatter_tensor():
return self.reduce_scatter_function(output_tensor,
Expand All @@ -272,7 +278,7 @@ def reduce_scatter_tensor(self, output_tensor, input_tensor, op=ReduceOp.SUM, gr
"please consider upgrading your pytorch installation.")
pass

@compiler.disable
@disable_compiler_collective
def all_to_all_single(self,
output,
input,
Expand All @@ -287,49 +293,49 @@ def all_to_all_single(self,
group=group,
async_op=async_op)

@compiler.disable
@disable_compiler_collective
def all_to_all(self, output_tensor_list, input_tensor_list, group=None, async_op=False):
return torch.distributed.all_to_all(output_tensor_list, input_tensor_list, group=group, async_op=async_op)

@compiler.disable
@disable_compiler_collective
def send(self, tensor, dst, group=None, tag=0):
return torch.distributed.send(tensor=tensor, dst=dst, group=group, tag=tag)

@compiler.disable
@disable_compiler_collective
def recv(self, tensor, src=None, group=None, tag=0):
return torch.distributed.recv(tensor=tensor, src=src, group=group, tag=tag)

@compiler.disable
@disable_compiler_collective
def isend(self, tensor, dst, group=None, tag=0):
return torch.distributed.isend(tensor=tensor, dst=dst, group=group, tag=tag)

@compiler.disable
@disable_compiler_collective
def irecv(self, tensor, src=None, group=None, tag=0):
return torch.distributed.irecv(tensor=tensor, src=src, group=group, tag=tag)

@compiler.disable
@disable_compiler_collective
def gather(self, tensor, gather_list=None, dst=0, group=None, async_op=False):
return torch.distributed.gather(tensor=tensor,
gather_list=gather_list,
dst=dst,
group=group,
async_op=async_op)

@compiler.disable
@disable_compiler_collective
def scatter(self, tensor, scatter_list=None, src=0, group=None, async_op=False):
return torch.distributed.scatter(tensor=tensor,
scatter_list=scatter_list,
src=src,
group=group,
async_op=async_op)

@compiler.disable
@disable_compiler_collective
def barrier(self, group=torch.distributed.GroupMember.WORLD, async_op=False, device_ids=None):
if group is None:
group = torch.distributed.GroupMember.WORLD
return torch.distributed.barrier(group=group, async_op=async_op, device_ids=device_ids)

@compiler.disable
@disable_compiler_collective
def monitored_barrier(self, group=torch.distributed.GroupMember.WORLD, timeout=None, wait_all_ranks=False):
if group is None:
group = torch.distributed.GroupMember.WORLD
Expand Down

0 comments on commit f519a89

Please sign in to comment.