Skip to content

Commit

Permalink
Merge remote-tracking branch 'yizhou_ds/yizhou/kernel_path' into yizh…
Browse files Browse the repository at this point in the history
…ou/kernel_path
  • Loading branch information
YizhouZ committed May 14, 2024
2 parents 00dd34e + 7af48cd commit 8ce2b86
Showing 1 changed file with 85 additions and 9 deletions.
94 changes: 85 additions & 9 deletions op_builder/hpu/fused_adam.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,88 @@

# DeepSpeed Team

from .builder import CPUOpBuilder
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
from op_builder.builder import OpBuilder
except ImportError:
from deepspeed.ops.op_builder.builder import OpBuilder

try:
import torch
import math
except ImportError as e:
pass

class FusedAdamBuilder(CPUOpBuilder):

class HPUFusedAdam:
htcore = None
is_lazy_mode = None

@staticmethod
def multi_tensor_adam(chunk_size, noop_flag_buffer, tensor_lists, lr, beta1, beta2, epsilon, step, adam_w_mode,
bias_correction, weight_decay, *args):

if HPUFusedAdam.htcore is None:
from habana_frameworks.torch import core as htcore
from habana_frameworks.torch.utils.internal import is_lazy
HPUFusedAdam.htcore = htcore
HPUFusedAdam.is_lazy_mode = is_lazy()

htcore = HPUFusedAdam.htcore

htcore.step_closure._mark_step_if_lazy()
step_size = lr
if bias_correction:
bias_correction1 = 1.0 - pow(beta1, step)
bias_correction2 = 1.0 - pow(beta2, step)
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1

neg_step = -step_size
neg_step_t = (torch.tensor([neg_step], dtype=torch.float,
requires_grad=False).to(tensor_lists[1][0].dtype).to(tensor_lists[1][0].device,
non_blocking=True))

weight_decay = weight_decay if adam_w_mode else 0

# since lr is fed into the kernel as tensor, perform the scalar multiplication of wd here
# NOTE: TODO if lr is updated every step, then we need to convert it as tensor and
# perform weight decay unconditonally.
modified_wd = 1.0 - weight_decay * lr

if HPUFusedAdam.is_lazy_mode:
torch.ops.hpu.optimizer_adamw(
tensor_lists[0],
tensor_lists[1],
tensor_lists[2],
tensor_lists[3],
neg_step_t,
beta1,
beta2,
epsilon,
modified_wd,
)
else:
modified_wd_t = (torch.tensor([modified_wd], dtype=torch.float, requires_grad=False).to(
tensor_lists[1][0].dtype).to(tensor_lists[1][0].device, non_blocking=True))
torch.ops.hpu.optimizer_adamw(
tensor_lists[0],
tensor_lists[1],
tensor_lists[2],
tensor_lists[3],
neg_step_t,
beta1,
beta2,
epsilon,
modified_wd_t,
modified_wd != 1.0,
)

htcore.step_closure._mark_step_if_lazy()


class FusedAdamBuilder(OpBuilder):
BUILD_VAR = "DS_BUILD_FUSED_ADAM"
NAME = "fused_adam"

Expand All @@ -18,12 +96,10 @@ def absolute_name(self):
return f'deepspeed.ops.adam.{self.NAME}_op'

def sources(self):
return ['csrc/cpu/adam/fused_adam.cpp', 'csrc/adam/cpu_adam_impl.cpp']

def cxx_args(self):
args = super().cxx_args()
args += ['-DENABLE_BFLOAT16']
return args
return []

def include_paths(self):
return ['csrc/includes']
return []

def load(self, verbose=True):
return HPUFusedAdam

0 comments on commit 8ce2b86

Please sign in to comment.