-
Notifications
You must be signed in to change notification settings - Fork 4.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix #1902 --------- Co-authored-by: Logan Adams <[email protected]>
- Loading branch information
Showing
4 changed files
with
229 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# DeepSpeed Team | ||
|
||
import pytest | ||
|
||
from contextlib import nullcontext | ||
import torch | ||
|
||
from unit.simple_model import SimpleModel, random_dataloader | ||
from unit.common import DistributedTest | ||
|
||
import deepspeed | ||
import deepspeed.comm as dist | ||
from deepspeed.utils import safe_get_full_grad | ||
|
||
|
||
class TestNoSyncCtxt(DistributedTest): | ||
world_size = 2 | ||
|
||
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32]) | ||
@pytest.mark.parametrize("zero_stage", [0, 1, 2, 3]) | ||
def test_zero_stage(self, zero_stage, dtype): | ||
config_dict = { | ||
"train_micro_batch_size_per_gpu": 1, | ||
"gradient_accumulation_steps": 1, | ||
"steps_per_print": 1, | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 1e-3 | ||
} | ||
}, | ||
"zero_optimization": { | ||
"stage": zero_stage, | ||
}, | ||
} | ||
|
||
invalid_cfg = zero_stage > 1 | ||
if dtype == torch.bfloat16: | ||
config_dict["bf16"] = {"enabled": True} | ||
elif dtype == torch.float16: | ||
config_dict["fp16"] = {"enabled": True, "initial_scale_power": 8} | ||
|
||
hidden_dim = 64 | ||
total_samples = 32 | ||
model = SimpleModel(hidden_dim) | ||
model, _, _, _ = deepspeed.initialize(model=model, model_parameters=model.parameters(), config=config_dict) | ||
data_loader = random_dataloader(model=model, | ||
total_samples=total_samples, | ||
hidden_dim=hidden_dim, | ||
device=model.device, | ||
dtype=dtype) | ||
dist.barrier() | ||
|
||
with pytest.raises(AssertionError) if invalid_cfg else nullcontext() as assertinfo: | ||
with model.no_sync(): | ||
for _, batch in enumerate(data_loader): | ||
loss = model(batch[0], batch[1]) | ||
model.backward(loss) | ||
if invalid_cfg: | ||
assert ("no_sync context manager is incompatible" in str(assertinfo)) | ||
|
||
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32]) | ||
@pytest.mark.parametrize("zero_stage", [0, 1]) | ||
def test_engine_step(self, zero_stage, dtype): | ||
config_dict = { | ||
"train_micro_batch_size_per_gpu": 1, | ||
"gradient_accumulation_steps": 1, | ||
"steps_per_print": 1, | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 1e-3 | ||
} | ||
}, | ||
"zero_optimization": { | ||
"stage": zero_stage, | ||
}, | ||
} | ||
|
||
if dtype == torch.bfloat16: | ||
config_dict["bf16"] = {"enabled": True} | ||
elif dtype == torch.float16: | ||
config_dict["fp16"] = {"enabled": True, "initial_scale_power": 8} | ||
|
||
hidden_dim = 64 | ||
total_samples = 32 | ||
model = SimpleModel(hidden_dim) | ||
model, _, _, _ = deepspeed.initialize(model=model, model_parameters=model.parameters(), config=config_dict) | ||
data_loader = random_dataloader(model=model, | ||
total_samples=total_samples, | ||
hidden_dim=hidden_dim, | ||
device=model.device, | ||
dtype=dtype) | ||
dist.barrier() | ||
|
||
with model.no_sync(): | ||
for _, batch in enumerate(data_loader): | ||
loss = model(batch[0], batch[1]) | ||
model.backward(loss) | ||
with pytest.raises(AssertionError) as assertinfo: | ||
model.step() | ||
assert ("It is illegal to call Engine.step() inside no_sync context manager" in str(assertinfo)) | ||
|
||
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32]) | ||
@pytest.mark.parametrize("zero_stage", [0, 1]) | ||
def test_multiple_ctxts(self, zero_stage, dtype): | ||
config_dict = { | ||
"train_micro_batch_size_per_gpu": 1, | ||
"gradient_accumulation_steps": 1, | ||
"steps_per_print": 1, | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 1e-3 | ||
} | ||
}, | ||
"zero_optimization": { | ||
"stage": zero_stage, | ||
}, | ||
} | ||
|
||
if dtype == torch.bfloat16: | ||
config_dict["bf16"] = {"enabled": True} | ||
elif dtype == torch.float16: | ||
config_dict["fp16"] = {"enabled": True, "initial_scale_power": 8} | ||
|
||
hidden_dim = 64 | ||
total_samples = 32 | ||
model = SimpleModel(hidden_dim) | ||
model, _, _, _ = deepspeed.initialize(model=model, model_parameters=model.parameters(), config=config_dict) | ||
data_loader = random_dataloader(model=model, | ||
total_samples=total_samples, | ||
hidden_dim=hidden_dim, | ||
device=model.device, | ||
dtype=dtype) | ||
dist.barrier() | ||
|
||
param_list = list(model.parameters()) | ||
first_losses = [] | ||
first_grad_norms = [] | ||
with model.no_sync(): | ||
for _, batch in enumerate(data_loader): | ||
loss = model(batch[0], batch[1]) | ||
first_losses.append(loss.item()) | ||
model.backward(loss) | ||
grad_norm = sum([safe_get_full_grad(p).norm() for p in param_list]) | ||
first_grad_norms.append(grad_norm.item()) | ||
|
||
second_losses = [] | ||
second_grad_norms = [] | ||
|
||
model.zero_grad() | ||
with model.no_sync(): | ||
for _, batch in enumerate(data_loader): | ||
loss = model(batch[0], batch[1]) | ||
second_losses.append(loss.item()) | ||
model.backward(loss) | ||
grad_norm = sum([safe_get_full_grad(p).norm() for p in param_list]) | ||
second_grad_norms.append(grad_norm.item()) | ||
|
||
assert len(first_losses) == len(second_losses) | ||
for x, y in zip(first_losses, second_losses): | ||
assert x == y | ||
|
||
assert len(first_grad_norms) == len(second_grad_norms) | ||
for x, y in zip(first_grad_norms, second_grad_norms): | ||
assert x == y | ||
|
||
def test_reentry(self): | ||
config_dict = { | ||
"train_micro_batch_size_per_gpu": 1, | ||
"gradient_accumulation_steps": 1, | ||
"steps_per_print": 1, | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 1e-3 | ||
} | ||
}, | ||
"zero_optimization": { | ||
"stage": 1, | ||
}, | ||
} | ||
|
||
hidden_dim = 64 | ||
model = SimpleModel(hidden_dim) | ||
model, _, _, _ = deepspeed.initialize(model=model, model_parameters=model.parameters(), config=config_dict) | ||
dist.barrier() | ||
|
||
with model.no_sync(): | ||
with pytest.raises(AssertionError) as assertinfo: | ||
with model.no_sync(): | ||
pass | ||
assert ("no_sync context manager reentry is unsupported" in str(assertinfo)) |