Skip to content

Fix the sequence-parallelism for the dense model architecture #7431

Fix the sequence-parallelism for the dense model architecture

Fix the sequence-parallelism for the dense model architecture #7431

Workflow file for this run

name: nv-inference
on:
pull_request:
paths-ignore:
- 'docs/**'
- 'blogs/**'
merge_group:
branches: [ master ]
schedule:
- cron: "0 0 * * *"
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
unit-tests:
runs-on: [self-hosted, nvidia, cu116, v100]
steps:
- uses: actions/checkout@v3
- id: setup-venv
uses: ./.github/workflows/setup-venv
- name: Install pytorch
run: |
pip install -U --cache-dir $TORCH_CACHE torch==1.13.1 torchvision --extra-index-url https://download.pytorch.org/whl/cu116
python -c "import torch; print('torch:', torch.__version__, torch)"
python -c "import torch; print('CUDA available:', torch.cuda.is_available())"
- name: Install transformers
run: |
git clone https://github.com/huggingface/transformers
cd transformers
git rev-parse --short HEAD
pip install .
- name: Install deepspeed
run: |
pip install .[dev,1bit,autotuning,inf,triton]
ds_report
- name: Python environment
run: |
pip list
- name: Unit tests
run: |
unset TORCH_CUDA_ARCH_LIST # only jit compile for current arch
cd tests
coverage run --concurrency=multiprocessing -m pytest $PYTEST_OPTS -m 'seq_inference' unit/ --torch_ver="1.13" --cuda_ver="11.6"
coverage run --concurrency=multiprocessing -m pytest $PYTEST_OPTS -m 'inference_ops' unit/ --torch_ver="1.13" --cuda_ver="11.6"
coverage run --concurrency=multiprocessing -m pytest $PYTEST_OPTS --forked -n 4 -m 'inference' unit/ --torch_ver="1.13" --cuda_ver="11.6"
- name: Coverage report
run: |
cd tests
coverage combine
coverage report -m