Skip to content

mehtanihar/pspnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch implementation of FCN8 and PSPNet

Download trained Deeplab Resnet model from: https://drive.google.com/open?id=0BxhUwxvLPO7TeXFNQ3YzcGI4Rjg

FCN8 and PSPNet were trained on the PASCAL VOC 2012 Dataset and the BRATS 2017 Dataset.

Results:

FCN8:

Validation: Pixel accuracy: 83%, Mean IU: 43%

PSPNet:

Validation: Pixel accuracy: 82%, Mean IU: 62%

Setup: Install the environment using:

conda env create -f environment.yml

Activate the environment:

source activate psp_env

Start visdom on port 8097:

visdom

Training:

python main.py [-h] --dataset DATASET --model MODEL [--train] [--test]
                    [--checkpoint CHECKPOINT] --config CONFIG
                    [--exp_suffix EXP_SUFFIX] [--device {cpu,cuda:0,cuda:1}]
                    [--image IMAGE] [--label LABEL]

Example:

python main.py --dataset VOC12 --model PSPNet --train --config ../configs/config.ini --exp_suffix 1 --device cpu

Validation:

python main.py --dataset VOC12 --model PSPNet --test --checkpoint <checkpoint_file>  --config ../configs/config.ini --exp_suffix 1 --image input_image --label output_image

References:

https://github.com/bodokaiser/piwise

https://github.com/isht7/pytorch-deeplab-resnet

About

Pytorch implementation of pspnet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages