Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adding the sum topology #1368

Merged
merged 4 commits into from
Oct 29, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,17 @@
`locally_compact_completely_regular`, and
`completely_regular_regular`.

- in file `mathcomp_extra.v`,
+ new definition `sigT_fun`.
- in file `sigT_topology.v`,
+ new definition `sigT_nbhs`.
+ new lemmas `sigT_nbhsE`, `existT_continuous`, `existT_open_map`,
`existT_nbhs`, `sigT_openP`, `sigT_continuous`, `sigT_setUE`, and
`sigT_compact`.
- in file `separation_axioms.v`,
+ new lemma `sum_hausdorff`.
zstone1 marked this conversation as resolved.
Show resolved Hide resolved


### Changed

- in file `normedtype.v`,
Expand Down
1 change: 1 addition & 0 deletions _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ theories/topology_theory/weak_topology.v
theories/topology_theory/num_topology.v
theories/topology_theory/quotient_topology.v
theories/topology_theory/one_point_compactification.v
theories/topology_theory/sigT_topology.v

theories/separation_axioms.v
theories/function_spaces.v
Expand Down
8 changes: 7 additions & 1 deletion classical/mathcomp_extra.v
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,11 @@ From mathcomp Require Import finset interval.
(* dfwith f x == fun j => x if j = i, and f j otherwise *)
(* given x : T i *)
(* swap x := (x.2, x.1) *)
(* map_pair f x := (f x.1, f x.2) *)
(* map_pair f x := (f x.1, f x.2) *)
(* monotonous A f := {in A &, {mono f : x y / x <= y}} \/ *)
(* {in A &, {mono f : x y /~ x <= y}} *)
(* sigT_fun f := lifts a family of functions f into a function on *)
(* the dependent sum *)
(* ``` *)
(* *)
(******************************************************************************)
Expand Down Expand Up @@ -509,3 +511,7 @@ Proof.
move=> fge x xab; have leab : (a <= b)%O by rewrite (itvP xab).
by rewrite in_itv/= !fge ?(itvP xab).
Qed.

Definition sigT_fun {I : Type} {X : I -> Type} {T : Type}
(f : forall i, X i -> T) (x : {i & X i}) : T :=
(f (projT1 x) (projT2 x)).
2 changes: 2 additions & 0 deletions theories/Make
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,8 @@ topology_theory/weak_topology.v
topology_theory/num_topology.v
topology_theory/quotient_topology.v
topology_theory/one_point_compactification.v
topology_theory/sigT_topology.v

separation_axioms.v
function_spaces.v
cantor.v
Expand Down
20 changes: 20 additions & 0 deletions theories/separation_axioms.v
Original file line number Diff line number Diff line change
Expand Up @@ -1125,3 +1125,23 @@ by move=> y [] ? [->] -> /eqP.
Qed.

End perfect_sets.

Section sigT_separations.
Context {I : choiceType} {X : I -> topologicalType}.

Lemma sigT_hausdorff :
(forall i, hausdorff_space (X i)) -> hausdorff_space {i & X i}.
Proof.
move=> hX [i x] [j y]; rewrite/cluster /= /nbhs /= 2!sigT_nbhsE /= => cl.
have [] := cl (existT X i @` [set: X i]) (existT X j @` [set: X j]);
[by apply: existT_nbhs; exact: filterT..|].
move=> p [/= [_ _ <-] [_ _ [ji]]] _.
rewrite {}ji {j} in x y cl *.
congr existT; apply: hX => U V Ux Vy.
have [] := cl (existT X i @` U) (existT X i @` V); [exact: existT_nbhs..|].
move=> z [] [l Ul <-] [r Vr lr]; exists l; split => //.
rewrite (Eqdep_dec.inj_pair2_eq_dec _ _ _ _ _ _ lr)// in Vr.
by move=> a b; exact: pselect.
Qed.

End sigT_separations.
87 changes: 87 additions & 0 deletions theories/topology_theory/sigT_topology.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra all_classical.
From mathcomp Require Import topology_structure compact subspace_topology.

(**md**************************************************************************)
(* # sigT topology *)
(* This file equips the type {i & X i} with its standard topology *)
(* *)
(* ``` *)
(* sigT_nbhs x == the neighborhoods of the standard topology on the *)
(* type {i & X i} *)
(* ``` *)
(******************************************************************************)

Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

Section sigT_topology.
Context {I : choiceType} {X : I -> topologicalType}.

Definition sigT_nbhs (x : {i & X i}) : set_system {i & X i} :=
existT _ _ @ nbhs (projT2 x).

Lemma sigT_nbhsE (i : I) (x : X i) :
sigT_nbhs (existT _ i x) = (existT _ _) @ (nbhs x).
Proof. by done. Qed.

HB.instance Definition _ := hasNbhs.Build {i & X i} sigT_nbhs.

Local Lemma sigT_nbhs_proper x : ProperFilter (sigT_nbhs x).
Proof. by case: x => i xi; exact: fmap_proper_filter. Qed.

Local Lemma sigT_nbhs_singleton x A : sigT_nbhs x A -> A x.
Proof. by case: x => ? ? /=; exact: nbhs_singleton. Qed.

Local Lemma sigT_nbhs_nbhs x A: sigT_nbhs x A -> sigT_nbhs x (sigT_nbhs^~ A).
Proof.
case: x => i Xi /=.
rewrite sigT_nbhsE /= nbhsE /= => -[W [oW Wz WlA]].
by exists W => // x /= Wx; exact/(filterS WlA)/open_nbhs_nbhs.
Qed.

HB.instance Definition _ := Nbhs_isNbhsTopological.Build {i & X i}
sigT_nbhs_proper sigT_nbhs_singleton sigT_nbhs_nbhs.

Lemma existT_continuous (i : I) : continuous (existT X i).
Proof. by move=> ? ?. Qed.

Lemma existT_open_map (i : I) (A : set (X i)) : open A -> open (existT X i @` A).
Proof.
move=> oA; rewrite openE /interior /= => iXi [x Ax <-].
rewrite /nbhs /= sigT_nbhsE /= nbhs_simpl /=.
move: oA; rewrite openE => /(_ _ Ax); apply: filterS.
by move=> z Az; exists z.
Qed.

Lemma existT_nbhs (i : I) (x : X i) (U : set (X i)) :
nbhs x U -> nbhs (existT _ i x) (existT _ i @` U).
Proof. exact/filterS/preimage_image. Qed.

Lemma sigT_openP (U : set {i & X i}) :
open U <-> forall i, open (existT _ i @^-1` U).
Proof.
split=> [oU i|?]; first by apply: open_comp=> // y _; exact: existT_continuous.
rewrite openE => -[i x Uxi].
by rewrite /interior /nbhs/= sigT_nbhsE; exact: open_nbhs_nbhs.
Qed.

Lemma sigT_continuous {Z : topologicalType} (f : forall i, X i -> Z) :
(forall i, continuous (f i)) -> continuous (sigT_fun f).
Proof. by move=> ctsf [] i x U nU; apply: existT_continuous; exact: ctsf. Qed.

Lemma sigT_setUE : [set: {i & X i}] = \bigcup_i (existT _ i @` [set: X i]).
Proof. by rewrite eqEsubset; split => [[i x] _|[]//]; exists i. Qed.

Lemma sigT_compact : finite_set [set: I] -> (forall i, compact [set: X i]) ->
compact [set: {i & X i}].
Proof.
move=> fsetI cptX; rewrite sigT_setUE -fsbig_setU//.
apply: big_rec; first exact: compact0.
move=> i ? _ cptx; apply: compactU => //.
apply: continuous_compact; last exact: cptX.
exact/continuous_subspaceT/existT_continuous.
Qed.

End sigT_topology.
1 change: 1 addition & 0 deletions theories/topology_theory/topology.v
Original file line number Diff line number Diff line change
Expand Up @@ -15,3 +15,4 @@ From mathcomp Require Export topology_structure.
From mathcomp Require Export uniform_structure.
From mathcomp Require Export weak_topology.
From mathcomp Require Export one_point_compactification.
From mathcomp Require Export sigT_topology.