Skip to content

Commit

Permalink
homotopy stuff
Browse files Browse the repository at this point in the history
  • Loading branch information
zstone1 committed Sep 1, 2022
1 parent 40b513d commit 9378705
Showing 1 changed file with 32 additions and 27 deletions.
59 changes: 32 additions & 27 deletions theories/homotopy.v
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ HB.mixin Record CrossingFree {R : realType} {T : topologicalType}
HB.structure Definition Loop {R : realType} {T : topologicalType}
(B : set T):= { f of @Path R _ B f & @IsClosed R T f}.

Notation "{ 'loop on' B }" := (@Loop.type _ _ B) : form_scope.
Notation "{ 'loop' R , B }" := (@Loop.type _ _ B) : form_scope.

HB.structure Definition JordanCurve {R : realType} {T : topologicalType}
(B : set T):= { f of @Loop R T B f & @CrossingFree R T f }.
Expand All @@ -71,6 +71,22 @@ HB.instance Definition _ := @IsClosed.Build R T f cst_closed.
Definition constant_path := [the (@Loop.type R T [set x]) of f].
End ConstantPath.

Section PathShift.
Context {R : realType} {T : topologicalType} (B : set T) (f : {path R, B}).

Lemma shift_path (shift : {fun `[(0:R),1]%classic >-> `[(0:R),1]%classic}) :
(continuous (shift : subspace `[0,1] -> subspace `[0,1])) ->
IsPath _ _ (f \o shift).
Proof.
move=> cts; split=> x.
apply: (@continuous_comp (subspace_topologicalType `[0,1])
(subspace_topologicalType `[0,1]) _).
exact: cts.
exact: path_continuous.
Qed.

End PathShift.

Lemma subspace_continuous_restricted {T : topologicalType} (A : set T)
(f : {fun A >-> A}) :
continuous (f : T -> T) -> continuous (f : subspace A -> subspace A).
Expand All @@ -82,11 +98,12 @@ rewrite eqEsubset; split=> x [] ? ?; split=> //; have: A (f x) by exact: funS.
by move=> afx; have: (V `&` A) (f x) by []; rewrite VAUA=> [[]].
by move=> afx; have: (U `&` A) (f x) by []; rewrite -VAUA=> [[]].
Qed.


Section Reverse.
Section ReversePath.
Context {R : realType} {T : topologicalType}.

Definition path_rev (x : subspace `[(0:R),1]) : subspace `[0,1] := `1- x.

Lemma path_rev_funS : @set_fun _ _ `[0,1]%classic `[0,1]%classic path_rev.
Proof.
rewrite ?set_itvcc => x /= /andP [] xnng xle1; apply/andP.
Expand All @@ -95,33 +112,21 @@ Qed.

HB.instance Definition _ :=
@IsFun.Build R R (`[0,1]%classic) (`[0,1]%classic) (path_rev) path_rev_funS.
Section ReverseFun.

Variable (B : set T) (f : {path R, B}).

Definition reverse_path := [fun of (f : _ -> _)] \o [fun of path_rev].

Local Lemma reverse_cts : {within `[0,1], continuous (reverse_path)}.
Proof.
move=> x; apply: (@continuous_comp _ (subspace_topologicalType `[0,1]) _).
move=> z; apply: subspace_continuous_restricted; rewrite /= /path_rev.
move=> ?; apply: (@continuousD R R R ); first exact: cst_continuous.
exact: opp_continuous.
exact: path_continuous.
Lemma rev_cts: continuous path_rev.
Proof.
move=> z; apply: subspace_continuous_restricted; rewrite /= /path_rev.
move=> ?; apply: (@continuousD R R R ); first exact: cst_continuous.
exact: opp_continuous.
Qed.

Local Lemma reverse_fun : set_fun `[0,1]%classic B reverse_path.
Proof.
HB.instance Definition _ (B : set T) (f : {path R, B}) :=
@shift_path R T B f [fun of path_rev] rev_cts.

HB.instance Definition _ := @IsPath.Build _ _ _ reverse_cts.
Lemma rev_loop (B : set T) {f : @Loop.type R T B} :
@IsClosed R T (f \o path_rev).
Proof. by split; rewrite /path_rev /= onem0 onem1 -endpointsE. Qed.

Definition test1 := [the (@Path.type R T B) of reverse_path].
@TheCanonical.put reverse_path reverse_path

End ReversePath.

Section ReversePathOn.
Context (B : set T) (f : @PathOn.type R T B).
Proof.
HB.instance Definition _ (B : set T) (f : {loop R, B}) := @rev_loop B f.

End Reverse.
End ReversePath.

0 comments on commit 9378705

Please sign in to comment.