-
Notifications
You must be signed in to change notification settings - Fork 47
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
180 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os.path\n", | ||
"import argparse\n", | ||
"import pandas as pd\n", | ||
"import tensorflow as tf\n", | ||
"from matbench.bench import MatbenchBenchmark\n", | ||
"from kgcnn.data.crystal import CrystalDataset\n", | ||
"from kgcnn.literature.DenseGNN import make_model_asu\n", | ||
"\n", | ||
"from sklearn.preprocessing import StandardScaler\n", | ||
"from kgcnn.training.schedule import LinearWarmupExponentialDecay\n", | ||
"from kgcnn.training.scheduler import LinearLearningRateScheduler\n", | ||
"import kgcnn.training.callbacks\n", | ||
"from kgcnn.utils.devices import set_devices_gpu\n", | ||
"import numpy as np\n", | ||
"from copy import deepcopy\n", | ||
"from hyper import *\n", | ||
"\n", | ||
"parser = argparse.ArgumentParser(description='Train DenseGNN.')\n", | ||
"parser.add_argument(\"--gpu\", required=False, help=\"GPU index used for training.\",\n", | ||
" default=None, nargs=\"+\", type=int)\n", | ||
"args = vars(parser.parse_args())\n", | ||
"print(\"Input of argparse:\", args)\n", | ||
"gpu_to_use = args[\"gpu\"]\n", | ||
"set_devices_gpu(gpu_to_use)\n", | ||
"\n", | ||
"subsets_compatible = [\"matbench_jdft2d\", \"matbench_phonons\", \"matbench_mp_gap\", \n", | ||
" \"matbench_perovskites\",\n", | ||
" \"matbench_log_kvrh\", \"matbench_log_gvrh\", \"matbench_dielectric\"]\n", | ||
"mb = MatbenchBenchmark(subset=subsets_compatible, autoload=False)\n", | ||
"\n", | ||
"callbacks = {\n", | ||
" \"graph_labels\": lambda st, ds: np.expand_dims(ds, axis=-1),\n", | ||
" \"node_coordinates\": lambda st, ds: np.array(st.cart_coords, dtype=\"float\"),\n", | ||
" \"node_frac_coordinates\": lambda st, ds: np.array(st.frac_coords, dtype=\"float\"),\n", | ||
" \"graph_lattice\": lambda st, ds: np.ascontiguousarray(np.array(st.lattice.matrix), dtype=\"float\"),\n", | ||
" \"abc\": lambda st, ds: np.array(st.lattice.abc),\n", | ||
" \"charge\": lambda st, ds: np.array([st.charge], dtype=\"float\"),\n", | ||
" \"volume\": lambda st, ds: np.array([st.lattice.volume], dtype=\"float\"),\n", | ||
" \"node_number\": lambda st, ds: np.array(st.atomic_numbers, dtype=\"int\"),\n", | ||
"}\n", | ||
"\n", | ||
"hyper_all = {\n", | ||
" \"matbench_jdft2d\": hyper_1,\n", | ||
" \"matbench_phonons\": hyper_2,\n", | ||
" \"matbench_mp_gap\": hyper_3,\n", | ||
" \"matbench_perovskites\": hyper_4,\n", | ||
" \"matbench_log_kvrh\": hyper_5,\n", | ||
" \"matbench_log_gvrh\": hyper_6,\n", | ||
" \"matbench_dielectric\": hyper_7,\n", | ||
"}\n", | ||
"\n", | ||
"restart_training = True\n", | ||
"remove_invalid_graphs_on_predict = True\n", | ||
"\n", | ||
"for idx_task, task in enumerate(mb.tasks):\n", | ||
" task.load()\n", | ||
" for i, fold in enumerate(task.folds):\n", | ||
" hyper = deepcopy(hyper_all[task.dataset_name])\n", | ||
"\n", | ||
" # Define loss for either classification or regression\n", | ||
" loss = {\n", | ||
" \"class_name\": \"BinaryCrossentropy\", \"config\": {\"from_logits\": True}\n", | ||
" } if task.metadata[\"task_type\"] == \"classification\" else \"mean_absolute_error\"\n", | ||
" hyper[\"training\"][\"compile\"][\"loss\"] = loss\n", | ||
"\n", | ||
" if restart_training and os.path.exists(\n", | ||
" \"%s_predictions_%s_fold_%s.npy\" % (task.dataset_name, hyper[\"model\"][\"config\"][\"name\"], i)):\n", | ||
" predictions = np.load(\n", | ||
" \"%s_predictions_%s_fold_%s.npy\" % (task.dataset_name, hyper[\"model\"][\"config\"][\"name\"], i)\n", | ||
" )\n", | ||
" task.record(fold, predictions)\n", | ||
" continue\n", | ||
"\n", | ||
" train_inputs, train_outputs = task.get_train_and_val_data(fold)\n", | ||
" data_train = CrystalDataset()\n", | ||
"\n", | ||
" data_train._map_callbacks(train_inputs, pd.Series(train_outputs.values), callbacks)\n", | ||
" print(\"Making graph... (this may take a while)\")\n", | ||
" data_train.set_methods(hyper[\"data\"][\"dataset\"][\"methods\"])\n", | ||
" data_train.clean(hyper[\"model\"][\"config\"][\"inputs\"])\n", | ||
"\n", | ||
" y_train = np.array(data_train.get(\"graph_labels\"))\n", | ||
" x_train = data_train.tensor(hyper[\"model\"][\"config\"][\"inputs\"])\n", | ||
"\n", | ||
" if task.metadata[\"task_type\"] == \"classification\":\n", | ||
" scaler = None\n", | ||
" else:\n", | ||
" scaler = StandardScaler(**hyper[\"training\"][\"scaler\"][\"config\"])\n", | ||
" y_train = scaler.fit_transform(y_train)\n", | ||
" print(y_train.shape)\n", | ||
"\n", | ||
" # train and validate your model\n", | ||
" model = make_model_asu(**hyper[\"model\"][\"config\"])\n", | ||
" model.compile(\n", | ||
" loss=tf.keras.losses.get(hyper[\"training\"][\"compile\"][\"loss\"]),\n", | ||
" optimizer=tf.keras.optimizers.get(hyper[\"training\"][\"compile\"][\"optimizer\"])\n", | ||
" )\n", | ||
" hist = model.fit(\n", | ||
" x_train, y_train,\n", | ||
" batch_size=hyper[\"training\"][\"fit\"][\"batch_size\"],\n", | ||
" epochs=hyper[\"training\"][\"fit\"][\"epochs\"],\n", | ||
" verbose=hyper[\"training\"][\"fit\"][\"verbose\"],\n", | ||
" callbacks=[tf.keras.utils.deserialize_keras_object(x) for x in hyper[\"training\"][\"fit\"][\"callbacks\"]]\n", | ||
" )\n", | ||
"\n", | ||
" # Get testing data\n", | ||
" test_inputs = task.get_test_data(fold, include_target=False)\n", | ||
" data_test = CrystalDataset()\n", | ||
" data_test._map_callbacks(test_inputs, pd.Series(np.zeros(len(test_inputs))), callbacks)\n", | ||
" print(\"Making graph... (this may take a while)\")\n", | ||
" data_test.set_methods(hyper[\"data\"][\"dataset\"][\"methods\"])\n", | ||
"\n", | ||
" if remove_invalid_graphs_on_predict:\n", | ||
" removed = data_test.clean(hyper[\"model\"][\"config\"][\"inputs\"])\n", | ||
" np.save(\n", | ||
" \"%s_predictions_invalid_%s_fold_%s.npy\" % (task.dataset_name, hyper[\"model\"][\"config\"][\"name\"], i),\n", | ||
" removed\n", | ||
" )\n", | ||
" else:\n", | ||
" removed = None\n", | ||
"\n", | ||
" # Predict on the testing data\n", | ||
" x_test = data_test.tensor(hyper[\"model\"][\"config\"][\"inputs\"])\n", | ||
" predictions_model = model.predict(x_test)\n", | ||
"\n", | ||
" if remove_invalid_graphs_on_predict:\n", | ||
" indices_test = [j for j in range(len(test_inputs))]\n", | ||
" for j in removed:\n", | ||
" indices_test.pop(j)\n", | ||
" predictions = np.expand_dims(np.zeros(len(test_inputs), dtype=\"float\"), axis=-1)\n", | ||
" predictions[np.array(indices_test)] = predictions_model\n", | ||
" else:\n", | ||
" predictions = predictions_model\n", | ||
"\n", | ||
" if task.metadata[\"task_type\"] == \"classification\":\n", | ||
" def np_sigmoid(x):\n", | ||
" return np.exp(-np.logaddexp(0, -x))\n", | ||
" predictions = np_sigmoid(predictions)\n", | ||
" else:\n", | ||
" predictions = scaler.inverse_transform(predictions)\n", | ||
"\n", | ||
" if predictions.shape[-1] == 1:\n", | ||
" predictions = np.squeeze(predictions, axis=-1)\n", | ||
"\n", | ||
" np.save(\n", | ||
" \"%s_predictions_%s_fold_%s.npy\" % (task.dataset_name, hyper[\"model\"][\"config\"][\"name\"], i),\n", | ||
" predictions\n", | ||
" )\n", | ||
"\n", | ||
" # Record data!\n", | ||
" task.record(fold, predictions)\n", | ||
"\n", | ||
"# Save your results\n", | ||
"mb.to_file(\"results_densegnn.json.gz\")\n", | ||
"\n", | ||
"for key, values in mb.scores.items():\n", | ||
" factor = 1000.0 if key in [\"matbench_jdft2d\"] else 1.0\n", | ||
" if key not in [\"matbench_mp_is_metal\"]:\n", | ||
" print(key, factor*values[\"mae\"][\"mean\"], factor*values[\"mae\"][\"std\"])\n", | ||
" else:\n", | ||
" print(key, values[\"rocauc\"][\"mean\"], values[\"rocauc\"][\"std\"])\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |