https://arxiv.org/abs/2410.03341
Clone Zero-NatVer:
git clone https://github.com/marekstrong/Zero-NatVer
cd Zero-NatVer
Then, setup a new conda environment:
conda env create -f environment.yml
conda activate zeronatver
The current Zero-NatVer codebase is based on Llama3 (meta-llama/Meta-Llama-3-8B-Instruct). To download and test the model, run the following script:
python ./llm/test_llm.py
This script runs several unit tests to test that the core functionality works and that all query types are supported.
You can run Zero-NatVer on a preprocessed version of SciFact using the following command:
python ./zeronatver.py \
-j "test/data/scifact_withevidence_norm.jsonl" \
-o "test/out.jsonl" \
--align-constrains-type "post" \
--claim-location "claim_preprocessed" \
--evidence-location "evidence_preprocessed"
If you find this work useful, please cite us:
@article{strong2024zero,
title={Zero-Shot Fact Verification via Natural Logic and Large Language Models},
author={Strong, Marek and Aly, Rami and Vlachos, Andreas},
journal={arXiv preprint arXiv:2410.03341},
year={2024}
}