Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Task4 #47

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions check.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# import cv2
# (width, height) = (130, 100)
# cap = cv2.VideoCapture(0)
# while (cap.isOpened()):
# ret, img = cap.read()
# img=cv2.flip(img, 1)
# cv2.rectangle(img, (20, 20), (250, 250), (255, 0, 0), 3)
# cv2.imshow("RGB Output", img)
# img1 = img[20:250,20:250]
# imCopy = img1.copy()
# gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
# blur = cv2.GaussianBlur(gray, (5, 5), 0)
# ret, thresh1 = cv2.threshold(blur, 10, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# hand_resize = cv2.resize(thresh1, (width, height))
# cv2.imshow("Threshold", thresh1)
# contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# cv2.drawContours(imCopy, contours, -1, (0, 255, 0))
# cv2.imshow('Draw Contours', imCopy)

# k = 0xFF & cv2.waitKey(10)
# if k == 27:
# break

# cap.release()
# cv2.destroyAllWindows()

# STATIC IMAGES INPUT

import cv2
img = cv2.imread('img.jpg')
cv2.imshow("Original Image", img)
img1 = cv2.resize(img, (300, 300))
cv2.imshow("Resized image", img1)
# ret, img = cap.read()
img2=cv2.flip(img1, 1)
cv2.imshow("Flipped image", img2)
cv2.rectangle(img2, (20, 20), (250, 250), (255, 0, 0), 3)
cv2.imshow("RGB Output", img2)
img3 = img2[20:250,20:250]
imCopy = img3.copy()
gray = cv2.cvtColor(img3, cv2.COLOR_BGR2GRAY)
cv2.imshow("grayscale",gray)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
cv2.imshow("GaussianBlur",blur)
ret, thresh1 = cv2.threshold(blur, 10, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
hand_resize = cv2.resize(thresh1, (500, 400))
cv2.imshow("Threshold", thresh1)
contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(imCopy, contours, -1, (0, 0, 0))
cv2.imshow('Draw Contours', imCopy)
# cv2.imshow("Image", img2)
interrupt = cv2.waitKey(0) & 0xFF
if interrupt == 27:
cv2.destroyAllWindows()
79 changes: 79 additions & 0 deletions collect-data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
import cv2
import os

if not os.path.exists("data"):
os.makedirs("data")
os.makedirs("data/train")
os.makedirs("data/train/0")
os.makedirs("data/train/1")
os.makedirs("data/train/2")
os.makedirs("data/train/3")
os.makedirs("data/train/4")
os.makedirs("data/train/5")


mode = 'train'
directory = 'data/'+mode+'/'

# url = '<YOUR IP ADDRESS>/video'
# cap=cv2.VideoCapture(url)

cap=cv2.VideoCapture(0)

while True:
_, frame = cap.read()
frame = cv2.flip(frame, 1)

cv2.putText(frame, "Sayak-Rana", (160, 240), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 3)

count = {'zero': len(os.listdir(directory+"/0")),
'one': len(os.listdir(directory+"/1")),
'two': len(os.listdir(directory+"/2")),
'three': len(os.listdir(directory+"/3")),
'four': len(os.listdir(directory+"/4")),
'five': len(os.listdir(directory+"/5"))}

cv2.putText(frame, "MODE : "+mode, (10, 50), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 1)
cv2.putText(frame, "IMAGE COUNT", (10, 90), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 1)
cv2.putText(frame, "ZERO : "+str(count['zero']), (10, 115), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 1)
cv2.putText(frame, "ONE : "+str(count['one']), (10, 140), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 1)
cv2.putText(frame, "TWO : "+str(count['two']), (10, 165), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 1)
cv2.putText(frame, "THREE : "+str(count['three']), (10, 190), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 1)
cv2.putText(frame, "FOUR : "+str(count['four']), (10, 215), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 1)
cv2.putText(frame, "FIVE : "+str(count['five']), (10, 240), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,0), 1)


x1 = int(0.5*frame.shape[1])
y1 = 10
x2 = frame.shape[1]-10
y2 = int(0.5*frame.shape[1])
cv2.rectangle(frame, (x1-1, y1-1), (x2+1, y2+1), (255,0,0) ,3)
roi = frame[y1:y2, x1:x2]
roi = cv2.resize(roi, (200, 200))
cv2.putText(frame, "R.O.I", (440, 350), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,225,0), 3)
cv2.imshow("Frame", frame)

roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
_, roi = cv2.threshold(roi, 120, 255, cv2.THRESH_OTSU)
cv2.imshow("ROI", roi)



interrupt = cv2.waitKey(10)
if interrupt & 0xFF == 27:
break
if interrupt & 0xFF == ord('0'):
cv2.imwrite(directory+'0/'+str(count['zero'])+'.jpg', roi)
if interrupt & 0xFF == ord('1'):
cv2.imwrite(directory+'1/'+str(count['one'])+'.jpg', roi)
if interrupt & 0xFF == ord('2'):
cv2.imwrite(directory+'2/'+str(count['two'])+'.jpg', roi)
if interrupt & 0xFF == ord('3'):
cv2.imwrite(directory+'3/'+str(count['three'])+'.jpg', roi)
if interrupt & 0xFF == ord('4'):
cv2.imwrite(directory+'4/'+str(count['four'])+'.jpg', roi)
if interrupt & 0xFF == ord('5'):
cv2.imwrite(directory+'5/'+str(count['five'])+'.jpg', roi)

cap.release()
cv2.destroyAllWindows()
69 changes: 69 additions & 0 deletions defects.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
import cv2
import numpy as np
import math

cap=cv2.VideoCapture(0)

while(cap.isOpened()):
ret, img = cap.read()
img=cv2.flip(img, 1)
cv2.rectangle(img,(20,20),(250,250),(255,0,0),3)
crop_img = img[20:250, 20:250]
grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
value = (35, 35)
blurred = cv2.GaussianBlur(grey, value, 0)
_, thresh1 = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(thresh1.copy(),cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key = lambda x: cv2.contourArea(x))
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(crop_img,(x,y),(x+w,y+h),(0,0,255),0)

hull = cv2.convexHull(cnt)
drawing = np.zeros(crop_img.shape,np.uint8)

cv2.drawContours(drawing,[cnt],0,(0,255,0),0)
cv2.drawContours(drawing,[hull],0,(0,0,255),0)

hull = cv2.convexHull(cnt,returnPoints = False)
defects = cv2.convexityDefects(cnt,hull)

count_defects = 0
cv2.drawContours(thresh1, contours, -1, (0,255,0), 3)

for i in range(defects.shape[0]):
s,e,f,d = defects[i,0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57

if angle <= 90:
count_defects += 1
cv2.circle(crop_img,far,1,[0,0,255],-1)

cv2.line(crop_img,start,end,[0,255,0],2)

if count_defects == 1:
cv2.putText(img,"Number : 2", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
elif count_defects == 2:
cv2.putText(img, "Number : 3", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
elif count_defects == 3:
cv2.putText(img,"Number : 4", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
elif count_defects == 4:
cv2.putText(img,"Number : 5", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
elif count_defects == 5:
cv2.putText(img,"Number : 6", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
else:
cv2.putText(img,"Number : 1", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)

cv2.imshow('Gesture', img)
cv2.imshow('Contours', drawing)
cv2.imshow('Defects', crop_img)
cv2.imshow('Binary Image', thresh1)

k = cv2.waitKey(10)
if k == 27:
break
Binary file added img.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added model-bw.h5
Binary file not shown.
1 change: 1 addition & 0 deletions model-bw.json
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": [null, 64, 64, 1], "dtype": "float32", "sparse": false, "ragged": false, "name": "conv2d_input"}}, {"class_name": "Conv2D", "config": {"name": "conv2d", "trainable": true, "batch_input_shape": [null, 64, 64, 1], "dtype": "float32", "filters": 32, "kernel_size": [3, 3], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}}, {"class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable": true, "dtype": "float32", "filters": 32, "kernel_size": [3, 3], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 6, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.6.0", "backend": "tensorflow"}
54 changes: 54 additions & 0 deletions prediction.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
from keras.models import model_from_json
import operator
import cv2

json_file = open("model-bw.json", "r")
model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(model_json)
loaded_model.load_weights("model-bw.h5")
print("Loaded model from disk")

cap = cv2.VideoCapture(0)

categories = {0: 'ZERO', 1: 'ONE', 2: 'TWO', 3: 'THREE', 4: 'FOUR', 5: 'FIVE'}

while True:
_, frame = cap.read()
frame = cv2.flip(frame, 1)

x1 = int(0.5*frame.shape[1])
y1 = 10
x2 = frame.shape[1]-10
y2 = int(0.5*frame.shape[1])

cv2.putText(frame, "Expressando - TDOC 2021", (175, 450), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (225,255,0), 3)
cv2.rectangle(frame, (x1-1, y1-1), (x2+1, y2+1), (255,255,255) ,3)
roi = frame[y1:y2, x1:x2]

roi = cv2.resize(roi, (64, 64))
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
cv2.putText(frame, "R.O.I", (440, 350), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,225,0), 3)

_, test_image = cv2.threshold(roi, 120, 255, cv2.THRESH_BINARY)
cv2.imshow("ROI", test_image)

result = loaded_model.predict(test_image.reshape(1, 64, 64, 1))
prediction = {'ZERO': result[0][0],
'ONE': result[0][1],
'TWO': result[0][2],
'THREE': result[0][3],
'FOUR': result[0][4],
'FIVE': result[0][5]}
prediction = sorted(prediction.items(), key=operator.itemgetter(1), reverse=True) #(0.9 = FIVE, 0.7, 0.6, 0.5, 0.4)
cv2.putText(frame, "PREDICTION:", (30, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2)
cv2.putText(frame, prediction[0][0], (80, 130), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2)
cv2.imshow("Frame", frame)

interrupt = cv2.waitKey(10)
if interrupt & 0xFF == 27:
break


cap.release()
cv2.destroyAllWindows()
40 changes: 40 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
absl-py==0.14.1
astunparse==1.6.3
cachetools==4.2.4
certifi==2021.5.30
charset-normalizer==2.0.6
clang==5.0
flatbuffers==1.12
gast==0.4.0
google-auth==1.35.0
google-auth-oauthlib==0.4.6
google-pasta==0.2.0
grpcio==1.41.0
h5py==3.1.0
idna==3.2
keras==2.6.0
Keras-Preprocessing==1.1.2
Markdown==3.3.4
numpy==1.19.5
oauthlib==3.1.1
opencv-python==4.5.3.56
opt-einsum==3.3.0
Pillow==8.4.0
protobuf==3.18.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
requests==2.26.0
requests-oauthlib==1.3.0
rsa==4.7.2
scipy==1.7.1
six==1.15.0
tensorboard==2.6.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.0
tensorflow==2.6.0
tensorflow-estimator==2.6.0
termcolor==1.1.0
typing-extensions==3.7.4.3
urllib3==1.26.7
Werkzeug==2.0.1
wrapt==1.12.1
52 changes: 52 additions & 0 deletions train_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D, Flatten, Dense

classifier = Sequential()

classifier.add(Convolution2D(32, (3, 3), input_shape=(64, 64, 1), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))

classifier.add(Convolution2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))

classifier.add(Flatten())

classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=6, activation='softmax'))

classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])


from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255) #epoch

training_set = train_datagen.flow_from_directory('data/train',
target_size=(64, 64),
batch_size=5,
color_mode='grayscale',
class_mode='categorical')

test_set = test_datagen.flow_from_directory('data/test',
target_size=(64, 64),
batch_size=5,
color_mode='grayscale',
class_mode='categorical')

classifier.fit_generator(
training_set,
epochs=10,
validation_data=test_set)

#Saving
model_json = classifier.to_json()
with open("model-bw.json", "w") as json_file:
json_file.write(model_json)
classifier.save_weights('model-bw.h5')