Skip to content

This is an unofficial implementation of the Paper by Kejiang Chen et.al. on Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models

License

Notifications You must be signed in to change notification settings

lthero-big/A-watermark-for-Diffusion-Models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

73 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

A watermark for Diffusion Models

δΈ­ζ–‡ | English

Note

This is an unofficial implementation of the Paper by Kejiang Chen et.al. on Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models

Features

  • 100% bit accurate of extracted message under lossless conditions for watermarked images. πŸŽ‰
  • Exceptional robustness against various types of high-intensity distortion attacks. E.g. an average bit accuracy rate of 90% with JPEG compression QF=10. πŸ‘
  • Compatibility with different versions of Stable Diffusion: v1-4, v2-0, v2-1. πŸŽ‰
  • Both command-line SD and script for SD-webui (More recommended) are supported to use. πŸ‘
  • No additional training required. Merely modifying the initial noise with nearly no impact on image quality. ✨
  • Plug-and-play βœ”οΈ

Generated images

Watermarked image on the left | Image without watermark on the right

Images after distortions

Bit Accuracy Result

Tutorial for SD-CLI

Generating Watermarked Images

  1. Download and ensure the original Stable Diffusion project is able to generate images.
  2. Add the following codes into txt2img.py in the scripts folder of Stable Diffusion.

First, add the following codes at the end of the function parse_args()

parser.add_argument(
    "--message",
    type=str,
    default="",
    help="watermark message",
)
parser.add_argument(
    "--key_hex",
    type=str,
    default="5822ff9cce6772f714192f43863f6bad1bf54b78326973897e6b66c3186b77a7",
    help="key_hex",
)
parser.add_argument(
    "--nonce_hex",
    type=str,
    default="05072fd1c2265f6f2e2a4080a2bfbdd8",
    help="nonce_hex",
)

And you will get things like this

parser.add_argument(
    "--bf16",
    action='store_true',
    help="Use bfloat16",
)
# Here are the new codes
############################
parser.add_argument(
    "--message",
    type=str,
    default="",
    help="watermark message",
)
parser.add_argument(
    "--key_hex",
    type=str,
    default="5822ff9cce6772f714192f43863f6bad1bf54b78326973897e6b66c3186b77a7",
    help="key_hex",
)
parser.add_argument(
    "--nonce_hex",
    type=str,
    default="05072fd1c2265f6f2e2a4080a2bfbdd8",
    help="nonce_hex",
)
##############################
opt = parser.parse_args()
return opt

Second, add the following codes after the line for n in trange(opt.n_iter, *desc*="Sampling"):

from gs_insert import gs_watermark_init_noise
Z_s_T_arrays = [gs_watermark_init_noise(opt,opt.message) for _ in range(opt.n_samples)]
start_code = torch.stack([torch.tensor(Z_s_T_array).float() for Z_s_T_array in Z_s_T_arrays]).to(device)

It will be like

for n in trange(opt.n_iter, desc="Sampling"):
    # Here are the new codes
    ############################
    from gs_insert import gs_watermark_init_noise
    Z_s_T_arrays = [gs_watermark_init_noise(opt,opt.message) for _ in range(opt.n_samples)]
    start_code = torch.stack([torch.tensor(Z_s_T_array).float() for Z_s_T_array in Z_s_T_arrays]).to(device)
    ##############################
    for prompts in tqdm(data, desc="data"):
        uc = None
        if opt.scale != 1.0:
            uc = model.get_learned_conditioning(batch_size * [""])
  1. Execute the command below to generate watermarked images.
python scripts/txt2img.py --prompt "a professional photograph of an astronaut riding a horse" \
--ckpt ../ckpt/v2-1_512-ema-pruned.ckpt \
--config ./configs/stable-diffusion/v2-inference.yaml \
--H 512 --W 512  \
--device cuda \
--n_samples 2 \
--key_hex "5822ff9cce6772f714192f43863f6bad1bf54b78326973897e6b66c3186b77a7" \
--nonce_hex "" \
--message "lthero"

Parameter Explanation

  • --ckpt: The model file for Stable Diffusion.

  • --config: The accompanying config file for Stable Diffusion.

  • --n_samples: Indicates the number of batches to generate, with 3 images being generated per batch.

  • --key_hex: The encryption key (32 bytes).

    • Input in hexadecimal, used to encrypt the message using the ChaCha20 encryption algorithm.
  • --nonce_hex: The nonce (16 bytes).

    • Input in hexadecimal, used for message encryption.
    • If nonce_hex is not provided, it will default to the middle 16 bytes of key_hex.
  • --message: The watermark message to be embedded, supports up to 256 bits (32 bytes). Messages exceeding this length will be truncated, and shorter ones will be padded.

Important

  • Both key_hex and nonce_hex can be left unentered, in which case a random 32-byte key_hex and a random 16-byte nonce_hex will be generated.
  • The message can also be left blank, in which case a random 256-bit (32-byte) content will be generated.
  • All the above parameters will be saved in info_data.txt (located in the root directory of the Stable Diffusion project).
  • If it is the first run, just keep key_hex and nonce_hex be unentered, so that the code is automatically generated; Or use the following code to generate key_hex and nonce_hex
import os
key = os.urandom(32)
nonce = os.urandom(16)
print(key.hex())
print(nonce.hex())

[Recommended]Tutorial for SD-WebUI

This work implement watermark embedding functionality in the form of a script based on the Stable Diffusion-WebUI project

Script Installation

  1. Place the GS_watermark_insert.py file from this project's scripts directory into the scripts directory of Stable Diffusion-WebUI.
  2. After you restart webui, you will find the script options at the bottom of the txt2img and img2img sections
  3. Click the script options then you can use "GS_watermark_insert".

image-script in webui

Three Parameters Provided by the Script

  • Key: Requires input in hexadecimal format of 32 bytes.
  • Nonce: Requires input in hexadecimal format of 16 bytes.
  • Message: The content must not exceed 32 bytes (Any strings are allowed).
  • repeat message four times: Keep the length of message as 64bit and repeat it four times for eatch line.This can improve bit accuracy greatly,set 1 to use, 0 is not.
  • use_randomSeed: Set a random seed in oder to generate the same picture with the same seed,set 1 to use, 0 is not.
  • Seed: the number you want to use.

Note

  • You can only fill in the Key and leave the Nonce empty; it will automatically select a Nonce.
  • Both Key and Nonce can be left blank, in this case, Key and Nonce will be generated automatically.

Important

In the root directory of Stable Diffusion-WebUI, you can find info_data.txt, which records the Key, Nonce, and Message.

Image Generation

  • After filling in the three parameters provided by the script, proceed with the image generation as usual. The generated images will have a watermark embedded.

Extracting Watermark Messages

Method 1

  1. Modify the parameters inside extricate.py.
  2. Run extricate.py with the command python extricate.py.

Method 2

Pass parameters through the command line:

python extricate.py \
--single_image_path "path to image" \
--image_directory_path "directory to image" \
--key_hex "xxxxxxxxxx" \
--original_message_hex "xxxxxxxxxxxxx" \
--num_inference_steps 50 \
--scheduler "DDIM" \
--is_traverse_subdirectories 0

Parameter Explanation

  • single_image_path: For single image processing, input the path of the image to be checked, e.g. "/xxx/images/001.png".

  • image_directory_path: For batch processing, the directory path of images to be checked, e.g. "/xxx/images".

    • Only one of these two modes can be selected at a time; if both are not empty, it will only process by directory path.
  • key_hex: Input in hexadecimal, retained in info_data.txt.

  • nonce_hex: Input in hexadecimal, retained in info_data.txt.

  • original_message_hex: When you generated a picture,the input message was converted to hexadecimal and retained in info_data.txt, you can find it there easily.

  • num_inference_steps: The number of reverse inference steps, set default as 50 steps

    • It's not recommended to increase further more. If the process of decoding is slow, it can be appropriately reduced to 20 steps.
  • scheduler: Choose the sampler

    • with "DPMs" and "DDIM" as options, set default as DDIM.
  • is_traverse_subdirectories: Whether to recursively extract from subdirectories.

    • If set to 0, it only processes images in the directory
    • If set to 1, it processes images in all subdirectories (including subdirectories of subdirectories,etc).

Caution

The original_message_hex must be input in hexadecimal format, strictly following what is entered in info_data.txt.

After running extricate.py, it will output the image name and Bit accuracy:

v2-1_512_00098-3367722000JPEG_QF_95.jpg
Bit accuracy:  1.0

Note

If batch processing is used, a result.txt file will be generated in the input directory, recording the results for each image.

If recursive processing is used, each subdirectory under image_directory_path will have a result.txt file, and image_directory_path will have a result.txt recording the average Bit accuracy in each subdirectory.

About

This is an unofficial implementation of the Paper by Kejiang Chen et.al. on Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages