-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add CDFS edge detection plotting script
- Loading branch information
Showing
1 changed file
with
265 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
# Load a patch of LSST data from the CDFS tract, then make diagnostic plots | ||
# for detection and deblending. | ||
|
||
# This is specifically looking for collinear detections which have been | ||
# diagnosed as a symptom of unmasked defects. | ||
# See https://rubinobs.atlassian.net/browse/DM-48174 for details. | ||
|
||
from collections import defaultdict | ||
|
||
from astropy.visualization import make_lupton_rgb | ||
import lsst.afw.image | ||
import lsst.daf.butler as dafButler | ||
from lsst.geom import degrees, Box2I, Extent2I, Point2I, SpherePoint | ||
from lsst.multiprofit.plotting.reference_data import bands_weights_lsst | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
|
||
mpl.rcParams.update({"image.origin": "lower", "font.size": 13, "figure.figsize": (18, 18)}) | ||
|
||
tract = 5063 | ||
patch = 5 | ||
radec = 53.0298882882399, -28.30743291598709 | ||
|
||
weird_lines = [16532, 15098], [972, 651] | ||
weird_lines_slope = (weird_lines[1][1] - weird_lines[1][0]) / ( | ||
weird_lines[0][1] - weird_lines[0][0] | ||
) | ||
weird_lines = [ | ||
weird_lines, | ||
([16238.5, 16238.5 - 100], [910, 910 + 100 / weird_lines_slope]), | ||
([15712, 15512], [0, 200 / weird_lines_slope]), | ||
] | ||
|
||
cutout_asec = 180, 180 | ||
|
||
cen_cutout = SpherePoint(radec[0], radec[1], degrees) | ||
|
||
|
||
def calibrate_exposure(exposure: lsst.afw.image.Exposure) -> lsst.afw.image.MaskedImageF: | ||
calib = exposure.getPhotoCalib() | ||
image = calib.calibrateImage( | ||
lsst.afw.image.MaskedImageF(exposure.image, mask=exposure.mask, variance=exposure.variance) | ||
) | ||
return image | ||
|
||
|
||
def get_cutout_lsst(coadd, cen_cutout, extent_cutout): | ||
cutout = calibrate_exposure(coadd.getCutout(cen_cutout, extent_cutout)) | ||
return cutout | ||
|
||
|
||
def get_peak_xys(mergeDet): | ||
n_peaks = np.sum([len(det.getFootprint().getPeaks()) for det in mergeDet]) | ||
idx_peak = 0 | ||
x_peaks = np.empty(n_peaks, dtype=int) | ||
y_peaks = np.empty(n_peaks, dtype=int) | ||
for det in mergeDet: | ||
peaks = det.getFootprint().getPeaks() | ||
n_peaks = len(peaks) | ||
x_peaks[idx_peak:idx_peak + n_peaks] = peaks["i_x"] | ||
y_peaks[idx_peak:idx_peak + n_peaks] = peaks["i_y"] | ||
idx_peak += n_peaks | ||
return x_peaks, y_peaks | ||
|
||
|
||
def plot_axis(axis, x, y, good, x_peaks, y_peaks, good_peaks, title="", weird_lines=[]): | ||
for x_wl, y_wl in weird_lines: | ||
axis.plot(x_wl, y_wl, 'r', zorder=0) | ||
if title: | ||
axis.set_title(title) | ||
axis.scatter( | ||
x[good], y[good], | ||
edgecolor='c', facecolor="None", marker='o', label="primary", s=120, zorder=1, | ||
) | ||
axis.scatter( | ||
x_peaks[good_peaks], y_peaks[good_peaks], | ||
c='c', marker='+', label="peaks", s=100, zorder=2, | ||
) | ||
axis.legend() | ||
|
||
def get_xy_corners(ra_begin, ra_end, dec_begin, dec_end, wcs): | ||
return ( | ||
(int(c) for c in wcs.skyToPixel(SpherePoint(ra, dec, degrees))) | ||
for ra, dec in ((ra_begin, dec_begin), (ra_end, dec_end)) | ||
) | ||
|
||
name_skymap = "lsst_cells_v1" | ||
butler = dafButler.Butler("/repo/embargo") | ||
skymap = butler.get("skyMap", skymap=name_skymap, collections="skymaps") | ||
tractInfo = skymap[tract] | ||
collections = ( | ||
"LSSTComCam/runs/DRP/20241101_20241120/w_2024_47/DM-47746", | ||
"LSSTComCam/runs/DRP/20241101_20241127/w_2024_48/DM-47841", | ||
# "LSSTComCam/runs/DRP/20241101_20241204/w_2024_49/DM-47988", | ||
) | ||
|
||
patchInfo = tractInfo[patch] | ||
bbox_outer = patchInfo.outer_bbox | ||
|
||
cosdec = np.cos(radec[1]*np.pi/180.) | ||
|
||
(ra_begin, ra_end), (dec_begin, dec_end) = ( | ||
(radec[0] + cutout_asec[0]/(cosdec*7200.0), radec[0] - cutout_asec[0]/(cosdec*7200.0)), | ||
(radec[1] - cutout_asec[1]/7200.0, radec[1] + cutout_asec[1]/7200.0), | ||
) | ||
(x_begin, y_begin), (x_end, y_end) = get_xy_corners(ra_begin, ra_end, dec_begin, dec_end, tractInfo.wcs) | ||
bbox = Box2I(Point2I(x_begin, y_begin), Extent2I(x_end - x_begin, y_end - y_begin)) | ||
|
||
cutouts_hst = {} | ||
cutouts_lsst = defaultdict(dict) | ||
|
||
figaxes_fp = {} | ||
|
||
bands_lsst = ("u", "g", "r", "i", "z", "y") | ||
bands_rgb = ("i", "r", "g") | ||
weight_mean = np.mean([bands_weights_lsst[band] for band in bands_rgb]) | ||
for band in bands_rgb: | ||
bands_weights_lsst[band] /= weight_mean | ||
kwargs_lup = dict(minimum=-0.1, Q=8, stretch=2) | ||
|
||
cutouts_collection = collections[0] | ||
cutouts_visits = None | ||
|
||
fig_rgb, ax_rgb = plt.subplots(nrows=1, ncols=len(collections), figsize=(12*len(collections), 12)) | ||
|
||
for idx, collection in enumerate(collections): | ||
objects = butler.get( | ||
"objectTable_tract", skymap=name_skymap, tract=tract, storageClass="ArrowAstropy", | ||
collections=collection, | ||
parameters={"columns": ("objectId", "patch", "coord_ra", "coord_dec", "x", "y", "detect_isPrimary")} | ||
) | ||
objects_patch = objects[objects["patch"] == patch] | ||
x, y = (objects_patch[c] for c in ("x", "y")) | ||
|
||
cutouts = {} | ||
for band in bands_lsst: | ||
cutouts[band] = butler.get( | ||
"deepCoadd_calexp", | ||
tract=tract, patch=patch, band=band, skymap=name_skymap, collections=collection, | ||
parameters={"bbox": bbox}, | ||
) | ||
if collection == cutouts_collection: | ||
cutouts_visits = cutouts | ||
|
||
bbox = cutouts[bands_rgb[1]].getBBox() | ||
x_begin, y_begin = bbox.getBegin() | ||
x_end, y_end = bbox.getEnd() | ||
extent = [x_begin, x_end, y_begin, y_end] | ||
good = objects_patch["detect_isPrimary"] & (x > x_begin) & (x < x_end) & (y > y_begin) & (y < y_end) | ||
|
||
mergeDet = butler.get( | ||
"deepCoadd_mergeDet", skymap=name_skymap, tract=tract, patch=patch, collections=collection, | ||
) | ||
x_peaks, y_peaks = get_peak_xys(mergeDet) | ||
good_peaks = (x_peaks > x_begin) & (x_peaks < x_end) & (y_peaks > y_begin) & (y_peaks < y_end) | ||
|
||
img_rgb_lsst = make_lupton_rgb( | ||
*[cutouts[band].image.array * bands_weights_lsst[band] for band in bands_rgb], | ||
**kwargs_lup | ||
) | ||
name_short = collection.split("/")[3] | ||
axis = ax_rgb[idx] | ||
axis.imshow(img_rgb_lsst, extent=extent) | ||
axis.autoscale(enable=False) | ||
plot_axis( | ||
axis, | ||
x, y, good, x_peaks, y_peaks, good_peaks, weird_lines=weird_lines, | ||
title=f"{tract=}, {patch=}, {','.join(bands_rgb)} {name_short} n_primary={np.sum(good)}", | ||
) | ||
|
||
nrows, ncols = 3, 2 | ||
fig_sig, ax_sig = plt.subplots(nrows=nrows, ncols=ncols, figsize=(16, 24)) | ||
|
||
row, col = 0, 0 | ||
for band, cutout in cutouts.items(): | ||
img_sigma = np.sqrt(cutout.variance.array) | ||
sigma_med = np.median(img_sigma) | ||
axis = ax_sig[row, col] | ||
axis.imshow(img_sigma, vmin=0.8*sigma_med, vmax=1.2*sigma_med, extent=extent, cmap="gray") | ||
axis.autoscale(enable=False) | ||
plot_axis( | ||
axis, | ||
x, y, good, x_peaks, y_peaks, good_peaks, weird_lines=weird_lines, | ||
title=f"{tract=}, {patch=}, {band=}, sigma clip(0.8*median, 1.2*median) {name_short}", | ||
) | ||
col += 1 | ||
if col == ncols: | ||
row += 1 | ||
col = 0 | ||
fig_sig.tight_layout() | ||
|
||
for fig in (fig_rgb,): | ||
fig.tight_layout() | ||
|
||
collection = cutouts_collection | ||
ccds = cutouts_visits["i"].getInfo().getCoaddInputs().ccds | ||
|
||
row, col = 0, 0 | ||
nrows, ncols = 2, 2 | ||
fig_ccd, ax_ccd = plt.subplots(nrows=nrows, ncols=ncols, figsize=(20, 20)) | ||
|
||
for ccd in ccds: | ||
calexp_wcs = butler.get( | ||
"calexp.wcs", visit=ccd["visit"], instrument="LSSTComCam", | ||
detector=ccd["ccd"], collections=collection, | ||
) | ||
(x_bc, y_bc), (x_ec, y_ec) = get_xy_corners(ra_begin, ra_end, dec_begin, dec_end, calexp_wcs) | ||
if x_bc > x_ec: | ||
x_bc, x_ec = x_ec, x_bc | ||
if y_bc > y_ec: | ||
y_bc, y_ec = y_ec, y_bc | ||
if (x_ec < ccd["bbox_min_x"]) or (x_bc > ccd["bbox_max_x"]) or ( | ||
y_ec < ccd["bbox_min_y"]) or (y_bc > ccd["bbox_max_y"]): | ||
continue | ||
x_bc, y_bc = (max(v, ccd[f"bbox_min_{c}"]) for v, c in ((x_bc, "x"), (y_bc, "y"))) | ||
x_ec, y_ec = (min(v, ccd[f"bbox_max_{c}"]) for v, c in ((x_ec, "x"), (y_ec, "y"))) | ||
cutout = butler.get( | ||
"calexp", | ||
visit=ccd["visit"], instrument="LSSTComCam", detector=ccd["ccd"], collections=collection, | ||
parameters={"bbox": Box2I(Point2I(x_bc, y_bc), Extent2I(x_ec - x_bc, y_ec - y_bc))}, | ||
) | ||
x_pc, y_pc = [], [] | ||
for _x, _y in zip(x_peaks, y_peaks): | ||
x_c, y_c = calexp_wcs.skyToPixel(tractInfo.wcs.pixelToSky(_x, _y)) | ||
if (x_c >= x_bc) and (x_c <= x_ec) and (y_c >= y_bc) and (y_c <= y_ec): | ||
x_pc.append(x_c) | ||
y_pc.append(y_c) | ||
|
||
axis_img = ax_ccd[row, 0] | ||
axis_sn = ax_ccd[row, 1] | ||
axis_img.imshow(np.arcsinh(cutout.image.array), extent=[x_bc, x_ec, y_bc, y_ec], cmap="gray") | ||
img_sn = cutout.image.array/np.sqrt(cutout.variance.array) | ||
axis_sn.imshow((img_sn >= 3)*np.clip(img_sn, 0, 8), extent=[x_bc, x_ec, y_bc, y_ec], cmap="gray") | ||
parallel = True | ||
for idx_wl, (x_wl, y_wl) in enumerate(weird_lines): | ||
x_wlc, y_wlc = [], [] | ||
for _x, _y in zip(x_wl, y_wl): | ||
x_c, y_c = calexp_wcs.skyToPixel(tractInfo.wcs.pixelToSky(_x, _y)) | ||
x_wlc.append(x_c) | ||
y_wlc.append(y_c) | ||
if idx_wl == 0: | ||
slope = (y_wlc[1] - y_wlc[0])/(x_wlc[1] - x_wlc[0]) | ||
if not ((np.abs(slope) < 0.05) or (np.abs(slope) > 20)): | ||
parallel = False | ||
break | ||
for axis in axis_img, axis_sn: | ||
axis.autoscale(enable=False) | ||
axis.plot(x_wlc, y_wlc, 'b', zorder=0) | ||
if not parallel: | ||
continue | ||
for axis in axis_img, axis_sn: | ||
axis.scatter(x_pc, y_pc, c='orange', marker='+', label="peaks", s=100, zorder=2) | ||
axis_img.set_title(f"visit={ccd['visit']} detector={ccd['ccd']} ({ccd['filter'][0]}) {name_short}") | ||
axis_sn.set_title("S/N clip (>3, <8)") | ||
row += 1 | ||
if row == nrows: | ||
row, col = 0, 0 | ||
fig_ccd.tight_layout() | ||
plt.show() | ||
plt.close(fig_ccd) | ||
del ax_ccd | ||
del fig_ccd | ||
fig_ccd, ax_ccd = plt.subplots(nrows=nrows, ncols=ncols, figsize=(20, 20)) |