forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
2 changed files
with
131 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
from datasets.download.download_manager import DownloadManager | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@article{tatoeba, | ||
title = {Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond}, | ||
author = {Mikel, Artetxe and Holger, Schwenk,}, | ||
journal = {arXiv:1812.10464v2}, | ||
year = {2018} | ||
} | ||
""" | ||
|
||
_LOCAL = False | ||
_LANGUAGES = ["ind", "vie", "tgl", "jav", "tha"] | ||
_DATASETNAME = "tatoeba" | ||
_DESCRIPTION = """\ | ||
This dataset is a subset of the Tatoeba corpus containing language pairs for Indonesian, Vietnamese, Tagalog, Javanese, and Thai. | ||
The original dataset description can be found below: | ||
This data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17. | ||
For each languages, we have selected 1000 English sentences and their translations, if available. Please check | ||
this paper for a description of the languages, their families and scripts as well as baseline results. | ||
Please note that the English sentences are not identical for all language pairs. This means that the results are | ||
not directly comparable across languages. In particular, the sentences tend to have less variety for several | ||
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ... | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/facebookresearch/LASER/blob/main/data/tatoeba/v1/README.md" | ||
_LICENSE = Licenses.APACHE_2_0.value | ||
_URL = "https://github.com/facebookresearch/LASER/raw/main/data/tatoeba/v1/" | ||
|
||
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] | ||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class TatoebaDatset(datasets.GeneratorBasedBuilder): | ||
"""Tatoeba subset for Indonesian, Vietnamese, Tagalog, Javanese, and Thai.""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
SEACROWD_SCHEMA_NAME = "t2t" | ||
|
||
dataset_names = sorted([f"tatoeba.{lang}" for lang in _LANGUAGES]) | ||
BUILDER_CONFIGS = [] | ||
for name in dataset_names: | ||
source_config = SEACrowdConfig( | ||
name=f"{name}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=name, | ||
) | ||
BUILDER_CONFIGS.append(source_config) | ||
seacrowd_config = SEACrowdConfig( | ||
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=name, | ||
) | ||
BUILDER_CONFIGS.append(seacrowd_config) | ||
|
||
# Choose first language as default | ||
DEFAULT_CONFIG_NAME = f"{dataset_names[0]}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"source_sentence": datasets.Value("string"), | ||
"target_sentence": datasets.Value("string"), | ||
"source_lang": datasets.Value("string"), | ||
"target_lang": datasets.Value("string"), | ||
} | ||
) | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.text2text_features | ||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Return SplitGenerators.""" | ||
lang_source = self.config.name.split(".")[1] | ||
lang = lang_source.split("_")[0] | ||
tatoeba_source_data = dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.{lang}") | ||
tatoeba_eng_data = dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.eng") | ||
return [datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": (tatoeba_source_data, tatoeba_eng_data), "split": "dev"})] | ||
|
||
def _generate_examples(self, filepath: Tuple[Path, Path], split: str) -> Tuple[int, Dict]: | ||
"""Yield examples as (key, example) tuples""" | ||
source_file = filepath[0] | ||
target_file = filepath[1] | ||
source_sentences = [] | ||
target_sentences = [] | ||
with open(source_file, encoding="utf-8") as f1: | ||
for row in f1: | ||
source_sentences.append(row) | ||
with open(target_file, encoding="utf-8") as f2: | ||
for row in f2: | ||
target_sentences.append(row) | ||
for idx in range(len(source_sentences)): | ||
if self.config.schema == "source": | ||
example = { | ||
"source_sentence": source_sentences[idx], | ||
"target_sentence": target_sentences[idx], | ||
"source_lang": source_file.split(".")[-1], | ||
"target_lang": "eng", | ||
} | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
example = { | ||
"id": str(idx), | ||
"text_1": source_sentences[idx], | ||
"text_2": target_sentences[idx], | ||
"text_1_name": source_file.split(".")[-1], | ||
"text_2_name": "eng", | ||
} | ||
yield idx, example |