Skip to content

Commit

Permalink
[Model] Add PaliGemma (vllm-project#5189)
Browse files Browse the repository at this point in the history
Co-authored-by: Woosuk Kwon <[email protected]>
  • Loading branch information
ywang96 and WoosukKwon authored Jul 7, 2024
1 parent 9389380 commit 6206dcb
Show file tree
Hide file tree
Showing 6 changed files with 557 additions and 2 deletions.
4 changes: 4 additions & 0 deletions docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -186,6 +186,10 @@ Vision Language Models
- LLaVA-NeXT
- :code:`llava-hf/llava-v1.6-mistral-7b-hf`, :code:`llava-hf/llava-v1.6-vicuna-7b-hf`, etc.
-
* - :code:`PaliGemmaForConditionalGeneration`
- PaliGemma
- :code:`google/paligemma-3b-pt-224`, :code:`google/paligemma-3b-mix-224`, etc.
-
* - :code:`Phi3VForCausalLM`
- Phi-3-Vision
- :code:`microsoft/Phi-3-vision-128k-instruct`, etc.
Expand Down
52 changes: 52 additions & 0 deletions examples/paligemma_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
import os
import subprocess

from PIL import Image

from vllm import LLM

# The assets are located at `s3://air-example-data-2/vllm_opensource_llava/`.
# You can use `.buildkite/download-images.sh` to download them


def run_paligemma():
llm = LLM(model="google/paligemma-3b-mix-224")

prompt = "caption es"

image = Image.open("images/stop_sign.jpg")

outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {
"image": image
},
})

for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)


def main():
run_paligemma()


if __name__ == "__main__":
# Download from s3
s3_bucket_path = "s3://air-example-data-2/vllm_opensource_llava/"
local_directory = "images"

# Make sure the local directory exists or create it
os.makedirs(local_directory, exist_ok=True)

# Use AWS CLI to sync the directory, assume anonymous access
subprocess.check_call([
"aws",
"s3",
"sync",
s3_bucket_path,
local_directory,
"--no-sign-request",
])
main()
147 changes: 147 additions & 0 deletions tests/models/test_paligemma.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
from typing import List, Optional, Tuple, Type

import pytest
from transformers import AutoTokenizer

from vllm.multimodal.utils import rescale_image_size
from vllm.sequence import SampleLogprobs

from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
from .utils import check_logprobs_close

pytestmark = pytest.mark.vlm

HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign": "caption es",
"cherry_blossom": "What is in the picture?",
"boardwalk": "What is in the picture?",
})

IMAGE_TOKEN_ID = 257152

models = ["google/paligemma-3b-mix-224"]


def vllm_to_hf_output(vllm_output: Tuple[List[int], str,
Optional[SampleLogprobs]],
model: str):
"""Sanitize vllm output to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output

tokenizer = AutoTokenizer.from_pretrained(model)
eos_token_id = tokenizer.eos_token_id

hf_output_ids = [
token_id for idx, token_id in enumerate(output_ids)
if token_id != IMAGE_TOKEN_ID or output_ids[idx - 1] != IMAGE_TOKEN_ID
]

hf_output_str = output_str

if hf_output_ids[-1] == eos_token_id:
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)

return hf_output_ids, hf_output_str, out_logprobs


def run_test(
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
image_assets: _ImageAssets,
model: str,
*,
size_factors: List[float],
dtype: str,
max_tokens: int,
num_logprobs: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test is under tests/images.
For huggingface runner, we provide the PIL images as input.
For vllm runner, we provide MultiModalDataDict objects
and corresponding vision language config as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
images = [asset.pil_image for asset in image_assets]

inputs_per_image = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]

# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).

# max_model_len should be greater than image_feature_size
with vllm_runner(model,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
vllm_outputs_per_image = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs_per_image
]

with hf_runner(model, dtype=dtype, is_vision_model=True) as hf_model:
hf_outputs_per_image = [
hf_model.generate_greedy_logprobs_limit(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs_per_image
]

for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
vllm_outputs_per_image):

check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=[
vllm_to_hf_output(vllm_output, model)
for vllm_output in vllm_outputs
],
name_0="hf",
name_1="vllm",
)


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models(hf_runner, vllm_runner, image_assets, model, size_factors,
dtype: str, max_tokens: int, num_logprobs: int) -> None:
run_test(
hf_runner,
vllm_runner,
image_assets,
model,
size_factors=size_factors,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tensor_parallel_size=1,
)
2 changes: 2 additions & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,8 @@
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
"PaliGemmaForConditionalGeneration":
("paligemma", "PaliGemmaForConditionalGeneration"),
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"Phi3ForCausalLM": ("llama", "LlamaForCausalLM"),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
Expand Down
10 changes: 8 additions & 2 deletions vllm/model_executor/models/gemma.py
Original file line number Diff line number Diff line change
Expand Up @@ -268,16 +268,22 @@ def __init__(
normalizer = self.config.hidden_size**0.5
self.register_buffer("normalizer", torch.tensor(normalizer))

def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
hidden_states *= self.normalizer

residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
Expand Down
Loading

0 comments on commit 6206dcb

Please sign in to comment.