Skip to content

Commit

Permalink
YOLOv5 segmentation model support (ultralytics#9052)
Browse files Browse the repository at this point in the history
* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix duplicate plots.py

* Fix check_font()

* # torch.use_deterministic_algorithms(True)

* update doc detect->predict

* Resolve precommit for segment/train and segment/val

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Resolve precommit for utils/segment

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Resolve precommit min_wh

* Resolve precommit utils/segment/plots

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Resolve precommit utils/segment/general

* Align NMS-seg closer to NMS

* restore deterministic init_seeds code

* remove easydict dependency

* update

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* restore output_to_target mask

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update

* cleanup

* Remove unused ImageFont import

* Unified NMS

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* DetectMultiBackend compatibility

* segment/predict.py update

* update plot colors

* fix bbox shifted

* sort bbox by confidence

* enable overlap by default

* Merge detect/segment output_to_target() function

* Start segmentation CI

* fix plots

* Update ci-testing.yml

* fix training whitespace

* optimize process mask functions (can we merge both?)

* Update predict/detect

* Update plot_images

* Update plot_images_and_masks

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Add train to CI

* fix precommit

* fix precommit CI

* fix precommit pycocotools

* fix val float issues

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix masks float float issues

* suppress errors

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix no-predictions plotting bug

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add CSV Logger

* fix val len(plot_masks)

* speed up evaluation

* fix process_mask

* fix plots

* update segment/utils build_targets

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* optimize utils/segment/general crop()

* optimize utils/segment/general crop() 2

* minor updates

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* torch.where revert

* downsample only if different shape

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* loss cleanup

* loss cleanup 2

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* loss cleanup 3

* update project names

* Rename -seg yamls from _underscore to -dash

* prepare for yolov5n-seg.pt

* precommit space fix

* add coco128-seg.yaml

* update coco128-seg comments

* cleanup val.py

* Major val.py cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* precommit fix

* precommit fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* optional pycocotools

* remove CI pip install pycocotools (auto-installed now)

* seg yaml fix

* optimize mask_iou() and masks_iou()

* threaded fix

* Major train.py update

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Major segments/val/process_batch() update

* yolov5/val updates from segment

* process_batch numpy/tensor fix

* opt-in to pycocotools with --save-json

* threaded pycocotools ops for 2x speed increase

* Avoid permute contiguous if possible

* Add max_det=300 argument to both val.py and segment/val.py

* fix onnx_dynamic

* speed up pycocotools ops

* faster process_mask(upsample=True) for predict

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* eliminate permutations for process_mask(upsample=True)

* eliminate permute-contiguous in crop(), use native dimension order

* cleanup comment

* Add Proto() module

* fix class count

* fix anchor order

* broadcast mask_gti in loss for speed

* Cleanup seg loss

* faster indexing

* faster indexing fix

* faster indexing fix2

* revert faster indexing

* fix validation plotting

* Loss cleanup and mxyxy simplification

* Loss cleanup and mxyxy simplification 2

* revert validation plotting

* replace missing tanh

* Eliminate last permutation

* delete unneeded .float()

* Remove MaskIOULoss and crop(if HWC)

* Final v6.3 SegmentationModel architecture updates

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add support for TF export

* remove debugger trace

* add call

* update

* update

* Merge master

* Merge master

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update dataloaders.py

* Restore CI

* Update dataloaders.py

* Fix TF/TFLite export for segmentation model

* Merge master

* Cleanup predict.py mask plotting

* cleanup scale_masks()

* rename scale_masks to scale_image

* cleanup/optimize plot_masks

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add Annotator.masks()

* Annotator.masks() fix

* Update plots.py

* Annotator mask optimization

* Rename crop() to crop_mask()

* Do not crop in predict.py

* crop always

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Merge master

* Add vid-stride from master PR

* Update seg model outputs

* Update seg model outputs

* Add segmentation benchmarks

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add segmentation benchmarks

* Add segmentation benchmarks

* Add segmentation benchmarks

* Fix DetectMultiBackend for OpenVINO

* update Annotator.masks

* fix val plot

* revert val plot

* clean up

* revert pil

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix CI error

* fix predict log

* remove upsample

* update interpolate

* fix validation plot logging

* Annotator.masks() cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Remove segmentation_model definition

* Restore 0.99999 decimals

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <[email protected]>
Co-authored-by: Laughing-q <[email protected]>
Co-authored-by: Jiacong Fang <[email protected]>
  • Loading branch information
5 people authored Sep 15, 2022
1 parent abea53e commit f9869f7
Show file tree
Hide file tree
Showing 27 changed files with 3,091 additions and 71 deletions.
22 changes: 20 additions & 2 deletions .github/workflows/ci-testing.yml
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ jobs:
Benchmarks:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest ]
python-version: [ '3.9' ] # requires python<=3.9
Expand All @@ -37,9 +38,12 @@ jobs:
python --version
pip --version
pip list
- name: Run benchmarks
- name: Benchmark DetectionModel
run: |
python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
- name: Benchmark SegmentationModel
run: |
python utils/benchmarks.py --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320
Tests:
timeout-minutes: 60
Expand Down Expand Up @@ -126,6 +130,20 @@ jobs:
model(im) # warmup, build grids for trace
torch.jit.trace(model, [im])
EOF
- name: Test segmentation
shell: bash # for Windows compatibility
run: |
m=${{ matrix.model }}-seg # official weights
b=runs/train-seg/exp/weights/best # best.pt checkpoint
python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train
for d in cpu; do # devices
for w in $m $b; do # weights
python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict
python export.py --weights $w.pt --img 64 --include torchscript --device $d # export
done
done
- name: Test classification
shell: bash # for Windows compatibility
run: |
Expand Down
20 changes: 14 additions & 6 deletions utils/benchmarks.py → benchmarks.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,16 +34,19 @@
import pandas as pd

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative

import export
import val
from models.experimental import attempt_load
from models.yolo import SegmentationModel
from segment.val import run as val_seg
from utils import notebook_init
from utils.general import LOGGER, check_yaml, file_size, print_args
from utils.torch_utils import select_device
from val import run as val_det


def run(
Expand All @@ -59,6 +62,7 @@ def run(
):
y, t = [], time.time()
device = select_device(device)
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
try:
assert i not in (9, 10, 11), 'inference not supported' # Edge TPU, TF.js and Paddle are unsupported
Expand All @@ -76,10 +80,14 @@ def run(
assert suffix in str(w), 'export failed'

# Validate
result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
speeds = result[2] # times (preprocess, inference, postprocess)
y.append([name, round(file_size(w), 1), round(metrics[3], 4), round(speeds[1], 2)]) # MB, mAP, t_inference
if model_type == SegmentationModel:
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
else: # DetectionModel:
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
speed = result[2][1] # times (preprocess, inference, postprocess)
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
Expand Down
101 changes: 101 additions & 0 deletions data/coco128-seg.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco128-seg ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128-seg # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush


# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128-seg.zip
4 changes: 2 additions & 2 deletions detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,8 +149,8 @@ def run(
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string

# Write results
Expand Down
18 changes: 15 additions & 3 deletions models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -375,7 +375,6 @@ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False,
if batch_dim.is_static:
batch_size = batch_dim.get_length()
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
output_layer = next(iter(executable_network.outputs))
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
elif engine: # TensorRT
LOGGER.info(f'Loading {w} for TensorRT inference...')
Expand Down Expand Up @@ -491,7 +490,7 @@ def forward(self, im, augment=False, visualize=False):
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
elif self.xml: # OpenVINO
im = im.cpu().numpy() # FP32
y = self.executable_network([im])[self.output_layer]
y = list(self.executable_network([im]).values())
elif self.engine: # TensorRT
if self.dynamic and im.shape != self.bindings['images'].shape:
i_in, i_out = (self.model.get_binding_index(x) for x in ('images', 'output'))
Expand Down Expand Up @@ -786,8 +785,21 @@ def __str__(self):
return ''


class Proto(nn.Module):
# YOLOv5 mask Proto module for segmentation models
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
super().__init__()
self.cv1 = Conv(c1, c_, k=3)
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.cv2 = Conv(c_, c_, k=3)
self.cv3 = Conv(c_, c2)

def forward(self, x):
return self.cv3(self.cv2(self.upsample(self.cv1(x))))


class Classify(nn.Module):
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
# YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
c_ = 1280 # efficientnet_b0 size
Expand Down
48 changes: 48 additions & 0 deletions models/segment/yolov5l-seg.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]

# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]
48 changes: 48 additions & 0 deletions models/segment/yolov5m-seg.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]

# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]
48 changes: 48 additions & 0 deletions models/segment/yolov5n-seg.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]

# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]
Loading

0 comments on commit f9869f7

Please sign in to comment.