Skip to content

Commit

Permalink
Detect.py supports running against a Triton container (ultralytics#9228)
Browse files Browse the repository at this point in the history
* update coco128-seg comments

* Enables detect.py to use Triton for inference

Triton Inference Server is an open source inference serving software
that streamlines AI inferencing.
https://github.com/triton-inference-server/server

The user can now provide a "--triton-url" argument to detect.py to use
a local or remote Triton server for inference.
For e.g., http://localhost:8000 will use http over port 8000
and grpc://localhost:8001 will use grpc over port 8001.
Note, it is not necessary to specify a weights file to use Triton.

A Triton container can be created by first exporting the Yolov5 model
to a Triton supported runtime. Onnx, Torchscript, TensorRT are
supported by both Triton and the export.py script.

The exported model can then be containerized via the OctoML CLI.
See https://github.com/octoml/octo-cli#getting-started for a guide.

* added triton client to requirements

* fixed support for TFSavedModels in Triton

* reverted change

* Test CoreML update

Signed-off-by: Glenn Jocher <[email protected]>

* Update ci-testing.yml

Signed-off-by: Glenn Jocher <[email protected]>

* Use pathlib

Signed-off-by: Glenn Jocher <[email protected]>

* Refacto DetectMultiBackend to directly accept triton url as --weights http://...

Signed-off-by: Glenn Jocher <[email protected]>

* Deploy category

Signed-off-by: Glenn Jocher <[email protected]>

* Update detect.py

Signed-off-by: Glenn Jocher <[email protected]>

* Update common.py

Signed-off-by: Glenn Jocher <[email protected]>

* Update common.py

Signed-off-by: Glenn Jocher <[email protected]>

* Update predict.py

Signed-off-by: Glenn Jocher <[email protected]>

* Update predict.py

Signed-off-by: Glenn Jocher <[email protected]>

* Update predict.py

Signed-off-by: Glenn Jocher <[email protected]>

* Update triton.py

Signed-off-by: Glenn Jocher <[email protected]>

* Update triton.py

Signed-off-by: Glenn Jocher <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add printout and requirements check

* Cleanup

Signed-off-by: Glenn Jocher <[email protected]>

* triton fixes

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fixed triton model query over grpc

* Update check_requirements('tritonclient[all]')

* group imports

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix likely remote URL bug

* update comment

* Update is_url()

* Fix 2x download attempt on http://path/to/model.pt

Signed-off-by: Glenn Jocher <[email protected]>
Co-authored-by: glennjocher <[email protected]>
Co-authored-by: Gaz Iqbal <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
4 people authored Sep 23, 2022
1 parent 1320ce1 commit d669a74
Show file tree
Hide file tree
Showing 7 changed files with 126 additions and 22 deletions.
2 changes: 1 addition & 1 deletion classify/predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ def run(
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.Tensor(im).to(device)
im = torch.Tensor(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
if len(im.shape) == 3:
im = im[None] # expand for batch dim
Expand Down
8 changes: 4 additions & 4 deletions detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@

@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s.pt', # model.pt path(s)
weights=ROOT / 'yolov5s.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
Expand Down Expand Up @@ -108,11 +108,11 @@ def run(
vid_path, vid_writer = [None] * bs, [None] * bs

# Run inference
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(device)
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
Expand Down Expand Up @@ -214,7 +214,7 @@ def run(

def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
Expand Down
44 changes: 30 additions & 14 deletions models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from collections import OrderedDict, namedtuple
from copy import copy
from pathlib import Path
from urllib.parse import urlparse

import cv2
import numpy as np
Expand Down Expand Up @@ -327,11 +328,13 @@ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False,

super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = self._model_type(w) # type
w = attempt_download(w) # download if not local
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
fp16 &= pt or jit or onnx or engine # FP16
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
stride = 32 # default stride
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
if not (pt or triton):
w = attempt_download(w) # download if not local

if pt: # PyTorch
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
Expand All @@ -342,7 +345,7 @@ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False,
elif jit: # TorchScript
LOGGER.info(f'Loading {w} for TorchScript inference...')
extra_files = {'config.txt': ''} # model metadata
model = torch.jit.load(w, _extra_files=extra_files)
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
model.half() if fp16 else model.float()
if extra_files['config.txt']: # load metadata dict
d = json.loads(extra_files['config.txt'],
Expand Down Expand Up @@ -472,6 +475,12 @@ def gd_outputs(gd):
predictor = pdi.create_predictor(config)
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
output_names = predictor.get_output_names()
elif triton: # NVIDIA Triton Inference Server
LOGGER.info(f'Using {w} as Triton Inference Server...')
check_requirements('tritonclient[all]')
from utils.triton import TritonRemoteModel
model = TritonRemoteModel(url=w)
nhwc = model.runtime.startswith("tensorflow")
else:
raise NotImplementedError(f'ERROR: {w} is not a supported format')

Expand All @@ -488,6 +497,8 @@ def forward(self, im, augment=False, visualize=False):
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
im = im.half() # to FP16
if self.nhwc:
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)

if self.pt: # PyTorch
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
Expand Down Expand Up @@ -517,7 +528,7 @@ def forward(self, im, augment=False, visualize=False):
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
elif self.coreml: # CoreML
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
im = im.cpu().numpy()
im = Image.fromarray((im[0] * 255).astype('uint8'))
# im = im.resize((192, 320), Image.ANTIALIAS)
y = self.model.predict({'image': im}) # coordinates are xywh normalized
Expand All @@ -532,8 +543,10 @@ def forward(self, im, augment=False, visualize=False):
self.input_handle.copy_from_cpu(im)
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
elif self.triton: # NVIDIA Triton Inference Server
y = self.model(im)
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
im = im.cpu().numpy()
if self.saved_model: # SavedModel
y = self.model(im, training=False) if self.keras else self.model(im)
elif self.pb: # GraphDef
Expand Down Expand Up @@ -566,23 +579,26 @@ def from_numpy(self, x):

def warmup(self, imgsz=(1, 3, 640, 640)):
# Warmup model by running inference once
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
if any(warmup_types) and self.device.type != 'cpu':
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
for _ in range(2 if self.jit else 1): #
self.forward(im) # warmup

@staticmethod
def _model_type(p='path/to/model.pt'):
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
from export import export_formats
sf = list(export_formats().Suffix) + ['.xml'] # export suffixes
check_suffix(p, sf) # checks
p = Path(p).name # eliminate trailing separators
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, xml2 = (s in p for s in sf)
xml |= xml2 # *_openvino_model or *.xml
tflite &= not edgetpu # *.tflite
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle
from utils.downloads import is_url
sf = list(export_formats().Suffix) # export suffixes
if not is_url(p, check=False):
check_suffix(p, sf) # checks
url = urlparse(p) # if url may be Triton inference server
types = [s in Path(p).name for s in sf]
types[8] &= not types[9] # tflite &= not edgetpu
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
return types + [triton]

@staticmethod
def _load_metadata(f=Path('path/to/meta.yaml')):
Expand Down
3 changes: 3 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,9 @@ seaborn>=0.11.0
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev # OpenVINO export

# Deploy --------------------------------------
# tritonclient[all]~=2.24.0

# Extras --------------------------------------
ipython # interactive notebook
psutil # system utilization
Expand Down
2 changes: 1 addition & 1 deletion segment/predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ def run(
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(device)
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
Expand Down
4 changes: 2 additions & 2 deletions utils/downloads.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,13 @@
import torch


def is_url(url, check_exists=True):
def is_url(url, check=True):
# Check if string is URL and check if URL exists
try:
url = str(url)
result = urllib.parse.urlparse(url)
assert all([result.scheme, result.netloc, result.path]) # check if is url
return (urllib.request.urlopen(url).getcode() == 200) if check_exists else True # check if exists online
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
except (AssertionError, urllib.request.HTTPError):
return False

Expand Down
85 changes: 85 additions & 0 deletions utils/triton.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
""" Utils to interact with the Triton Inference Server
"""

import typing
from urllib.parse import urlparse

import torch


class TritonRemoteModel:
""" A wrapper over a model served by the Triton Inference Server. It can
be configured to communicate over GRPC or HTTP. It accepts Torch Tensors
as input and returns them as outputs.
"""

def __init__(self, url: str):
"""
Keyword arguments:
url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000
"""

parsed_url = urlparse(url)
if parsed_url.scheme == "grpc":
from tritonclient.grpc import InferenceServerClient, InferInput

self.client = InferenceServerClient(parsed_url.netloc) # Triton GRPC client
model_repository = self.client.get_model_repository_index()
self.model_name = model_repository.models[0].name
self.metadata = self.client.get_model_metadata(self.model_name, as_json=True)

def create_input_placeholders() -> typing.List[InferInput]:
return [
InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]

else:
from tritonclient.http import InferenceServerClient, InferInput

self.client = InferenceServerClient(parsed_url.netloc) # Triton HTTP client
model_repository = self.client.get_model_repository_index()
self.model_name = model_repository[0]['name']
self.metadata = self.client.get_model_metadata(self.model_name)

def create_input_placeholders() -> typing.List[InferInput]:
return [
InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]

self._create_input_placeholders_fn = create_input_placeholders

@property
def runtime(self):
"""Returns the model runtime"""
return self.metadata.get("backend", self.metadata.get("platform"))

def __call__(self, *args, **kwargs) -> typing.Union[torch.Tensor, typing.Tuple[torch.Tensor, ...]]:
""" Invokes the model. Parameters can be provided via args or kwargs.
args, if provided, are assumed to match the order of inputs of the model.
kwargs are matched with the model input names.
"""
inputs = self._create_inputs(*args, **kwargs)
response = self.client.infer(model_name=self.model_name, inputs=inputs)
result = []
for output in self.metadata['outputs']:
tensor = torch.as_tensor(response.as_numpy(output['name']))
result.append(tensor)
return result[0] if len(result) == 1 else result

def _create_inputs(self, *args, **kwargs):
args_len, kwargs_len = len(args), len(kwargs)
if not args_len and not kwargs_len:
raise RuntimeError("No inputs provided.")
if args_len and kwargs_len:
raise RuntimeError("Cannot specify args and kwargs at the same time")

placeholders = self._create_input_placeholders_fn()
if args_len:
if args_len != len(placeholders):
raise RuntimeError(f"Expected {len(placeholders)} inputs, got {args_len}.")
for input, value in zip(placeholders, args):
input.set_data_from_numpy(value.cpu().numpy())
else:
for input in placeholders:
value = kwargs[input.name]
input.set_data_from_numpy(value.cpu().numpy())
return placeholders

0 comments on commit d669a74

Please sign in to comment.