Skip to content

Commit

Permalink
Add PyTorch Hub results.save(labels=False) option (ultralytics#7129)
Browse files Browse the repository at this point in the history
  • Loading branch information
glenn-jocher authored Mar 24, 2022
1 parent bc3ed95 commit a0a4adf
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, nu
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
# self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))

Expand Down Expand Up @@ -589,7 +589,7 @@ def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
self.s = shape # inference BCHW shape

def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
crops = []
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
Expand All @@ -606,7 +606,7 @@ def display(self, pprint=False, show=False, save=False, crop=False, render=False
crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
'im': save_one_box(box, im, file=file, save=save)})
else: # all others
annotator.box_label(box, label, color=colors(cls))
annotator.box_label(box, label if labels else '', color=colors(cls))
im = annotator.im
else:
s += '(no detections)'
Expand All @@ -633,19 +633,19 @@ def print(self):
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
self.t)

def show(self):
self.display(show=True) # show results
def show(self, labels=True):
self.display(show=True, labels=labels) # show results

def save(self, save_dir='runs/detect/exp'):
def save(self, labels=True, save_dir='runs/detect/exp'):
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
self.display(save=True, save_dir=save_dir) # save results
self.display(save=True, labels=labels, save_dir=save_dir) # save results

def crop(self, save=True, save_dir='runs/detect/exp'):
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
return self.display(crop=True, save=save, save_dir=save_dir) # crop results

def render(self):
self.display(render=True) # render results
def render(self, labels=True):
self.display(render=True, labels=labels) # render results
return self.imgs

def pandas(self):
Expand Down

0 comments on commit a0a4adf

Please sign in to comment.