forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create README_cn.md (ultralytics#8344)
* Create README_cn.md Add mandarin version of README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README.md * fix link * fix english link * remove line * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update .pre-commit-config.yaml * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README_cn.md * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update .pre-commit-config.yaml * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README_cn.md * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update .pre-commit-config.yaml * Update README.md * Update README_cn.md * Kiera fix * Update README_cn.md Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
19f33cb
commit 5c990e3
Showing
3 changed files
with
294 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,291 @@ | ||
<div align="center"> | ||
<p> | ||
<a align="left" href="https://ultralytics.com/yolov5" target="_blank"> | ||
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a> | ||
</p> | ||
<br> | ||
|
||
[English](../README.md) | 简体中文 | ||
<div> | ||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a> | ||
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> | ||
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> | ||
<br> | ||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | ||
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> | ||
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a> | ||
</div> | ||
|
||
<br> | ||
<p> | ||
YOLOv5🚀是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了<a href="https://ultralytics.com">Ultralytics</a>对未来视觉AI方法的公开研究,其中包含了在数千小时的研究和开发中所获得的经验和最佳实践。 | ||
</p> | ||
|
||
<div align="center"> | ||
<a href="https://github.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://www.linkedin.com/company/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://twitter.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://www.producthunt.com/@glenn_jocher"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://youtube.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://www.facebook.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://www.instagram.com/ultralytics/"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/> | ||
</a> | ||
</div> | ||
|
||
<!-- | ||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank"> | ||
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a> | ||
--> | ||
|
||
</div> | ||
|
||
## <div align="center">文件</div> | ||
|
||
请参阅[YOLOv5 Docs](https://docs.ultralytics.com),了解有关培训、测试和部署的完整文件。 | ||
|
||
## <div align="center">快速开始案例</div> | ||
|
||
<details open> | ||
<summary>安装</summary> | ||
|
||
在[**Python>=3.7.0**](https://www.python.org/) 的环境中克隆版本仓并安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt),包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。 | ||
```bash | ||
git clone https://github.com/ultralytics/yolov5 # 克隆 | ||
cd yolov5 | ||
pip install -r requirements.txt # 安装 | ||
``` | ||
|
||
</details> | ||
|
||
<details open> | ||
<summary>推断</summary> | ||
|
||
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推断. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从最新YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)下载。 | ||
|
||
```python | ||
import torch | ||
|
||
# 模型 | ||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom | ||
|
||
# 图像 | ||
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list | ||
|
||
# 推论 | ||
results = model(img) | ||
|
||
# 结果 | ||
results.print() # or .show(), .save(), .crop(), .pandas(), etc. | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
<summary>用 detect.py 进行推断</summary> | ||
|
||
`detect.py` 在各种资源上运行推理, 从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中自动下载 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 并保存结果来运行/检测。 | ||
|
||
```bash | ||
python detect.py --source 0 # 网络摄像头 | ||
img.jpg # 图像 | ||
vid.mp4 # 视频 | ||
path/ # 文件夹 | ||
path/*.jpg # glob | ||
'https://youtu.be/Zgi9g1ksQHc' # YouTube | ||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP 流 | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
<summary>训练</summary> | ||
|
||
以下指令再现了YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) | ||
数据集结果. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) 自动从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)中下载。YOLOv5n/s/m/l/x的训练时间在V100 GPU上是1/2/4/6/8天(多GPU倍速). 尽可能使用最大的 `--batch-size`, 或通过 `--batch-size -1` 来实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092). 批量大小显示为V100-16GB。 | ||
|
||
```bash | ||
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128 | ||
yolov5s 64 | ||
yolov5m 40 | ||
yolov5l 24 | ||
yolov5x 16 | ||
``` | ||
|
||
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png"> | ||
|
||
</details> | ||
|
||
<details open> | ||
<summary>教程</summary> | ||
|
||
- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 推荐 | ||
- [获得最佳训练效果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ 推荐 | ||
- [Weights & Biases 登陆](https://github.com/ultralytics/yolov5/issues/1289) 🌟 新 | ||
- [Roboflow:数据集、标签和主动学习](https://github.com/ultralytics/yolov5/issues/4975) 🌟 新 | ||
- [多GPU训练](https://github.com/ultralytics/yolov5/issues/475) | ||
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ 新 | ||
- [TFLite, ONNX, CoreML, TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251) 🚀 | ||
- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303) | ||
- [模型组合](https://github.com/ultralytics/yolov5/issues/318) | ||
- [模型剪枝/稀疏性](https://github.com/ultralytics/yolov5/issues/304) | ||
- [超参数进化](https://github.com/ultralytics/yolov5/issues/607) | ||
- [带有冻结层的迁移学习](https://github.com/ultralytics/yolov5/issues/1314) ⭐ 新 | ||
- [架构概要](https://github.com/ultralytics/yolov5/issues/6998) ⭐ 新 | ||
|
||
</details> | ||
|
||
## <div align="center">环境</div> | ||
|
||
使用经过我们验证的环境,几秒钟就可以开始。点击下面的每个图标了解详情。 | ||
|
||
<div align="center"> | ||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/> | ||
</a> | ||
<a href="https://www.kaggle.com/ultralytics/yolov5"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/> | ||
</a> | ||
<a href="https://hub.docker.com/r/ultralytics/yolov5"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/> | ||
</a> | ||
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/> | ||
</a> | ||
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/> | ||
</a> | ||
</div> | ||
|
||
## <div align="center">一体化</div> | ||
|
||
<div align="center"> | ||
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/> | ||
</a> | ||
<a href="https://roboflow.com/?ref=ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/> | ||
</a> | ||
</div> | ||
|
||
|Weights and Biases|Roboflow ⭐ 新| | ||
|:-:|:-:| | ||
|通过 [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) 自动跟踪和可视化你在云端的所有YOLOv5训练运行状态。|标记并将您的自定义数据集直接导出到YOLOv5,以便用 [Roboflow](https://roboflow.com/?ref=ultralytics) 进行训练。 | | ||
|
||
<!-- ## <div align="center">Compete and Win</div> | ||
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes! | ||
<p align="center"> | ||
<a href="https://github.com/ultralytics/yolov5/discussions/3213"> | ||
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a> | ||
</p> --> | ||
|
||
## <div align="center">为什么是 YOLOv5</div> | ||
|
||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p> | ||
<details> | ||
<summary>YOLOv5-P5 640 图像 (点击扩展)</summary> | ||
|
||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p> | ||
</details> | ||
<details> | ||
<summary>图片注释 (点击扩展)</summary> | ||
|
||
- **COCO AP val** 表示 [email protected]:0.95 在5000张图像的[COCO val2017](http://cocodataset.org)数据集上,在256到1536的不同推理大小上测量的指标。 | ||
- **GPU Speed** 衡量的是在 [COCO val2017](http://cocodataset.org) 数据集上使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例在批量大小为32时每张图像的平均推理时间。 | ||
- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) ,批量大小为 8。 | ||
- **重制** 于 `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` | ||
|
||
</details> | ||
|
||
### 预训练检查点 | ||
|
||
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B) | ||
|--- |--- |--- |--- |--- |--- |--- |--- |--- | ||
|[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5** | ||
|[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5 | ||
|[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0 | ||
|[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1 | ||
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7 | ||
| | | | | | | | | | ||
|[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6 | ||
|[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |12.6 |16.8 | ||
|[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0 | ||
|[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4 | ||
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |55.0<br>**55.8** |72.7<br>**72.7** |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>- | ||
|
||
<details> | ||
<summary>表格注释 (点击扩展)</summary> | ||
|
||
- 所有检查点都以默认设置训练到300个时期. Nano和Small模型用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, 其他模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml). | ||
- **mAP<sup>val</sup>** 值是 [COCO val2017](http://cocodataset.org) 数据集上的单模型单尺度的值。 | ||
<br>重制于 `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` | ||
- 使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) 实例对COCO val图像的平均速度。不包括NMS时间(~1 ms/img) | ||
<br>重制于`python val.py --data coco.yaml --img 640 --task speed --batch 1` | ||
- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和比例增强. | ||
<br>重制于 `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` | ||
|
||
</details> | ||
|
||
## <div align="center">贡献</div> | ||
|
||
我们重视您的意见! 我们希望大家对YOLOv5的贡献尽可能的简单和透明。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者! | ||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a> | ||
|
||
## <div align="center">联系</div> | ||
|
||
关于YOLOv5的漏洞和功能问题,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。业务咨询或技术支持服务请访问[https://ultralytics.com/contact](https://ultralytics.com/contact)。 | ||
|
||
<br> | ||
|
||
<div align="center"> | ||
<a href="https://github.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://www.linkedin.com/company/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://twitter.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://www.producthunt.com/@glenn_jocher"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://youtube.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://www.facebook.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://www.instagram.com/ultralytics/"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/> | ||
</a> | ||
</div> | ||
|
||
[assets]: https://github.com/ultralytics/yolov5/releases | ||
[tta]: https://github.com/ultralytics/yolov5/issues/303 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters