Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat (LinearAlgebra/RootSystem/Finite): nondegeneracy of canonical bilinear form restricted to root span #18569

Closed
wants to merge 14 commits into from
Closed
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3390,6 +3390,7 @@ import Mathlib.LinearAlgebra.Reflection
import Mathlib.LinearAlgebra.RootSystem.Basic
import Mathlib.LinearAlgebra.RootSystem.Defs
import Mathlib.LinearAlgebra.RootSystem.Finite.CanonicalBilinear
import Mathlib.LinearAlgebra.RootSystem.Finite.Nondegenerate
import Mathlib.LinearAlgebra.RootSystem.Hom
import Mathlib.LinearAlgebra.RootSystem.OfBilinear
import Mathlib.LinearAlgebra.RootSystem.RootPairingCat
Expand Down
14 changes: 13 additions & 1 deletion Mathlib/Algebra/Order/BigOperators/Ring/Finset.lean
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,6 @@ lemma sum_sq_le_sq_sum_of_nonneg (hf : ∀ i ∈ s, 0 ≤ f i) :
· exact hf i hi
· exact single_le_sum hf hi


end OrderedSemiring

section OrderedCommSemiring
Expand Down Expand Up @@ -142,6 +141,19 @@ lemma sum_mul_sq_le_sq_mul_sq (s : Finset ι) (f g : ι → R) :
sum_le_sum fun i _ ↦ two_mul_le_add_sq (f i * ∑ j ∈ s, g j ^ 2) (g i * ∑ j ∈ s, f j * g j)
_ = _ := by simp_rw [sum_add_distrib, mul_pow, ← sum_mul]; ring

theorem sum_mul_self_eq_zero_iff (s : Finset ι) (f : ι → R) :
∑ i ∈ s, f i * f i = 0 ↔ ∀ i ∈ s, f i = 0 := by
induction s using Finset.cons_induction with
| empty => simp
| cons i s his ih =>
simp only [Finset.sum_cons, Finset.mem_cons, forall_eq_or_imp]
refine ⟨fun hc => ?_, fun h => by simpa [h.1] using ih.mpr h.2⟩
have hi : f i * f i ≤ 0 := by
rw [← hc, le_add_iff_nonneg_right]
exact Finset.sum_nonneg fun i _ ↦ mul_self_nonneg (f i)
have h : f i * f i = 0 := (eq_of_le_of_le (mul_self_nonneg (f i)) hi).symm
exact ⟨zero_eq_mul_self.mp h.symm, ih.mp (by rw [← hc, h, zero_add])⟩
Comment on lines +144 to +155
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This can be proven in greater generality and much more easily:

theorem sum_mul_self_eq_zero_iff [LinearOrderedRing R] (s : Finset ι) (f : ι → R) :
    ∑ i ∈ s, f i * f i = 0 ↔ ∀ i ∈ s, f i = 0 := by
  rw [sum_eq_zero_iff_of_nonneg fun _ _ ↦ mul_self_nonneg _]
  simp

I do this golfing in my own inequality PR #19311.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That is much better!


end LinearOrderedCommSemiring

lemma abs_prod [LinearOrderedCommRing R] (s : Finset ι) (f : ι → R) :
Expand Down
7 changes: 7 additions & 0 deletions Mathlib/LinearAlgebra/Dimension/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -353,6 +353,13 @@ theorem rank_subsingleton [Subsingleton R] : Module.rank R M = 1 := by
subsingleton
· exact hw.trans_eq (Cardinal.mk_singleton _).symm

lemma rank_le_of_smul_regular {S : Type*} [CommSemiring S] [Algebra S R] [Module S M]
[IsScalarTower S R M] (L L' : Submodule R M) {s : S} (hr : IsSMulRegular M s)
(h : ∀ x ∈ L, s • x ∈ L') :
Module.rank R L ≤ Module.rank R L' :=
((Algebra.lsmul S R M s).restrict h).rank_le_of_injective <|
fun _ _ h ↦ by simpa using hr (Subtype.ext_iff.mp h)

end

end Module
12 changes: 11 additions & 1 deletion Mathlib/LinearAlgebra/Dimension/RankNullity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -203,13 +203,23 @@ lemma Submodule.finrank_quotient_add_finrank [Module.Finite R M] (N : Submodule
Submodule.finrank_eq_rank]
exact HasRankNullity.rank_quotient_add_rank _


/-- Rank-nullity theorem using `finrank` and subtraction. -/
lemma Submodule.finrank_quotient [Module.Finite R M] {S : Type*} [Ring S] [SMul R S] [Module S M]
[IsScalarTower R S M] (N : Submodule S M) : finrank R (M ⧸ N) = finrank R M - finrank R N := by
rw [← (N.restrictScalars R).finrank_quotient_add_finrank]
exact Nat.eq_sub_of_add_eq rfl

lemma Submodule.disjoint_ker_of_finrank_eq [NoZeroSMulDivisors R M] {N : Type*} [AddCommGroup N]
[Module R N] {L : Submodule R M} [Module.Finite R L] (f : M →ₗ[R] N)
(h : finrank R (L.map f) = finrank R L) :
Disjoint L (LinearMap.ker f) := by
refine disjoint_iff.mpr <| LinearMap.injective_domRestrict_iff.mp <| LinearMap.ker_eq_bot.mp <|
Submodule.rank_eq_zero.mp ?_
rw [← Submodule.finrank_eq_rank, Nat.cast_eq_zero]
rw [← LinearMap.range_domRestrict] at h
have := (LinearMap.ker (f.domRestrict L)).finrank_quotient_add_finrank
rwa [LinearEquiv.finrank_eq (f.domRestrict L).quotKerEquivRange, h, Nat.add_eq_left] at this

end Finrank

section
Expand Down
8 changes: 8 additions & 0 deletions Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
Original file line number Diff line number Diff line change
Expand Up @@ -465,4 +465,12 @@ theorem LinearMap.finrank_range_le [Module.Finite R M] (f : M →ₗ[R] M') :
finrank R (LinearMap.range f) ≤ finrank R M :=
finrank_le_finrank_of_rank_le_rank (lift_rank_range_le f) (rank_lt_aleph0 _ _)

theorem LinearMap.finrank_le_of_smul_regular {S : Type*} [CommSemiring S] [Algebra S R] [Module S M]
[IsScalarTower S R M] (L L' : Submodule R M) [Module.Finite R L'] {s : S}
(hr : IsSMulRegular M s) (h : ∀ x ∈ L, s • x ∈ L') :
Module.finrank R L ≤ Module.finrank R L' := by
refine finrank_le_finrank_of_rank_le_rank (lift_le.mpr <| rank_le_of_smul_regular L L' hr h) ?_
rw [← Module.finrank_eq_rank R L']
exact nat_lt_aleph0 (finrank R ↥L')

end StrongRankCondition
11 changes: 11 additions & 0 deletions Mathlib/LinearAlgebra/Dual.lean
Original file line number Diff line number Diff line change
Expand Up @@ -715,6 +715,17 @@ instance instFiniteDimensionalOfIsReflexive (K V : Type*)
rw [lift_id']
exact lt_trans h₁ h₂

instance [IsDomain R] : NoZeroSMulDivisors R M := by
refine (noZeroSMulDivisors_iff R M).mpr ?_
intro r m hrm
rw [or_iff_not_imp_left]
intro hr
suffices Dual.eval R M m = Dual.eval R M 0 from (bijective_dual_eval R M).injective this
ext n
simp only [Dual.eval_apply, map_zero, LinearMap.zero_apply]
suffices r • n m = 0 from eq_zero_of_ne_zero_of_mul_left_eq_zero hr this
rw [← LinearMap.map_smul_of_tower, hrm, LinearMap.map_zero]

end IsReflexive

end Module
Expand Down
6 changes: 6 additions & 0 deletions Mathlib/LinearAlgebra/RootSystem/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -374,6 +374,12 @@ lemma isReduced_iff : P.IsReduced ↔ ∀ i j : ι, i ≠ j →
· exact Or.inl (congrArg P.root h')
· exact Or.inr (h i j h' hLin)

/-- The linear span of roots. -/
abbrev rootSpan := span R (range P.root)

/-- The linear span of coroots. -/
abbrev corootSpan := span R (range P.coroot)

/-- The `Weyl group` of a root pairing is the group of automorphisms of the weight space generated
by reflections in roots. -/
def weylGroup : Subgroup (M ≃ₗ[R] M) :=
Expand Down
64 changes: 57 additions & 7 deletions Mathlib/LinearAlgebra/RootSystem/Finite/CanonicalBilinear.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,9 @@ Copyright (c) 2024 Scott Carnahan. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Carnahan
-/
import Mathlib.LinearAlgebra.RootSystem.Defs
import Mathlib.Algebra.Order.BigOperators.Ring.Finset
import Mathlib.Algebra.Ring.SumsOfSquares
import Mathlib.LinearAlgebra.RootSystem.Defs

/-!
# The canonical bilinear form on a finite root pairing
Expand All @@ -22,27 +23,28 @@ Weyl group.
* `Polarization`: A distinguished linear map from the weight space to the coweight space.
* `RootForm` : The bilinear form on weight space corresponding to `Polarization`.

## References:
* SGAIII Exp. XXI
* Bourbaki, Lie groups and Lie algebras

## Main results:
* `polarization_self_sum_of_squares` : The inner product of any weight vector is a sum of squares.
* `rootForm_reflection_reflection_apply` : `RootForm` is invariant with respect
to reflections.
* `rootForm_self_smul_coroot`: The inner product of a root with itself times the
corresponding coroot is equal to two times Polarization applied to the root.
* `rootForm_self_non_neg`: `RootForm` is positive semidefinite.

## References:
* [N. Bourbaki, *Lie groups and {L}ie algebras. {C}hapters 4--6*][bourbaki1968]
* [M. Demazure, *SGA III, Expos\'{e} XXI, Don\'{e}es Radicielles*][demazure1970]

## TODO (possibly in other files)
* Positivity and nondegeneracy
* Weyl-invariance
* Faithfulness of Weyl group action, and finiteness of Weyl group, for finite root systems.
* Relation to Coxeter weight. In particular, positivity constraints for finite root pairings mean
we restrict to weights between 0 and 4.
-/

open Function
open Set Function
open Module hiding reflection
open Submodule (span)

noncomputable section

Expand Down Expand Up @@ -132,6 +134,54 @@ lemma rootForm_root_self (j : ι) :
P.RootForm (P.root j) (P.root j) = ∑ (i : ι), (P.pairing j i) * (P.pairing j i) := by
simp [rootForm_apply_apply]

theorem range_polarization_domRestrict_le_span_coroot :
LinearMap.range (P.Polarization.domRestrict P.rootSpan) ≤ P.corootSpan := by
intro y hy
obtain ⟨x, hx⟩ := hy
rw [← hx, LinearMap.domRestrict_apply, Polarization_apply]
refine (mem_span_range_iff_exists_fun R).mpr ?_
use fun i => (P.toPerfectPairing x) (P.coroot i)
simp

end CommRing

section LinearOrderedCommRing

variable [Fintype ι] [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] (P : RootPairing ι R M N)

theorem rootForm_self_non_neg (x : M) : 0 ≤ P.RootForm x x :=
IsSumSq.nonneg (P.rootForm_self_sum_of_squares x)

theorem rootForm_self_zero_iff (x : M) :
P.RootForm x x = 0 ↔ ∀ i, P.coroot' i x = 0 := by
simp only [rootForm_apply_apply, PerfectPairing.toLin_apply, LinearMap.coe_comp, comp_apply,
Polarization_apply, map_sum, map_smul, smul_eq_mul]
convert Finset.sum_mul_self_eq_zero_iff Finset.univ fun i => P.coroot' i x
simp

lemma rootForm_root_self_pos (j : ι) :
0 < P.RootForm (P.root j) (P.root j) := by
simp only [LinearMap.coe_mk, AddHom.coe_mk, LinearMap.coe_comp, comp_apply,
rootForm_apply_apply, toLin_toPerfectPairing]
refine Finset.sum_pos' (fun i _ => (sq (P.pairing j i)) ▸ sq_nonneg (P.pairing j i)) ?_
use j
simp

lemma prod_rootForm_root_self_pos :
0 < ∏ i, P.RootForm (P.root i) (P.root i) :=
Finset.prod_pos fun i _ => rootForm_root_self_pos P i

lemma prod_rootForm_smul_coroot_mem_range_domRestrict (i : ι) :
(∏ a : ι, P.RootForm (P.root a) (P.root a)) • P.coroot i ∈
LinearMap.range (P.Polarization.domRestrict (P.rootSpan)) := by
obtain ⟨c, hc⟩ := Finset.dvd_prod_of_mem (fun a ↦ P.RootForm (P.root a) (P.root a))
(Finset.mem_univ i)
rw [hc, mul_comm, mul_smul, rootForm_self_smul_coroot]
refine LinearMap.mem_range.mpr ?_
use ⟨(c • 2 • P.root i), by aesop⟩
simp

end LinearOrderedCommRing

end RootPairing
128 changes: 128 additions & 0 deletions Mathlib/LinearAlgebra/RootSystem/Finite/Nondegenerate.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
/-
Copyright (c) 2024 Scott Carnahan. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Carnahan
-/
import Mathlib.LinearAlgebra.BilinearForm.Basic
import Mathlib.LinearAlgebra.Dimension.Localization
import Mathlib.LinearAlgebra.QuadraticForm.Basic
import Mathlib.LinearAlgebra.RootSystem.Finite.CanonicalBilinear
import Mathlib.LinearAlgebra.RootSystem.RootPositive

/-!
# Nondegeneracy of the polarization on a finite root pairing

We show that if the base ring of a finite root pairing is linearly ordered, then the canonical
ScottCarnahan marked this conversation as resolved.
Show resolved Hide resolved
bilinear form is root-positive and positive-definite on the span of roots.
From these facts, it is easy to show that Coxeter weights in a finite root pairing are bounded
above by 4. Thus, the pairings of roots and coroots in a root pairing are restricted to the
interval `[-4, 4]`. Furthermore, a linearly independent pair of roots cannot have Coxeter weight 4.
For the case of crystallographic root pairings, we are thus reduced to a finite set of possible
options for each pair.
Another application is to the faithfulness of the Weyl group action on roots, and finiteness of the
Weyl group.

## Main results:
* `RootPairing.rootForm_rootPositive`: `RootForm` is root-positive.
* `RootPairing.polarization_domRestrict_injective`: The polarization restricted to the span of
roots is injective.
* `RootPairing.rootForm_pos_of_nonzero`: `RootForm` is strictly positive on non-zero linear
combinations of roots. This gives us a convenient way to eliminate certain Dynkin diagrams from
the classification, since it suffices to produce a nonzero linear combination of simple roots with
non-positive norm.

## References:
* [N. Bourbaki, *Lie groups and {L}ie algebras. {C}hapters 4--6*][bourbaki1968]
* [M. Demazure, *SGA III, Expos\'{e} XXI, Don\'{e}es Radicielles*][demazure1970]

## Todo
* Weyl-invariance of `RootForm` and `CorootForm`
* Faithfulness of Weyl group perm action, and finiteness of Weyl group, over ordered rings.
* Relation to Coxeter weight. In particular, positivity constraints for finite root pairings mean
we restrict to weights between 0 and 4.
-/

noncomputable section

open Set Function
open Module hiding reflection
open Submodule (span)

namespace RootPairing

variable {ι R M N : Type*}

variable [Fintype ι] [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] (P : RootPairing ι R M N)
ScottCarnahan marked this conversation as resolved.
Show resolved Hide resolved

lemma rootForm_rootPositive : IsRootPositive P P.RootForm where
zero_lt_apply_root i := P.rootForm_root_self_pos i
symm := P.rootForm_symmetric
apply_reflection_eq := P.rootForm_reflection_reflection_apply

instance : Module.Finite R P.rootSpan := Finite.span_of_finite R <| finite_range P.root

instance : Module.Finite R P.corootSpan := Finite.span_of_finite R <| finite_range P.coroot

@[simp]
lemma finrank_rootSpan_map_polarization_eq_finrank_corootSpan :
finrank R (P.rootSpan.map P.Polarization) = finrank R P.corootSpan := by
rw [← LinearMap.range_domRestrict]
apply (Submodule.finrank_mono P.range_polarization_domRestrict_le_span_coroot).antisymm
have : IsReflexive R N := PerfectPairing.reflexive_right P.toPerfectPairing
refine LinearMap.finrank_le_of_smul_regular P.corootSpan
(LinearMap.range (P.Polarization.domRestrict P.rootSpan))
(smul_right_injective N (Ne.symm (ne_of_lt P.prod_rootForm_root_self_pos)))
fun _ hx => ?_
obtain ⟨c, hc⟩ := (mem_span_range_iff_exists_fun R).mp hx
rw [← hc, Finset.smul_sum]
simp_rw [smul_smul, mul_comm, ← smul_smul]
exact Submodule.sum_smul_mem (LinearMap.range (P.Polarization.domRestrict P.rootSpan)) c
(fun c _ ↦ prod_rootForm_smul_coroot_mem_range_domRestrict P c)

/-- An auxiliary lemma en route to `RootPairing.finrank_corootSpan_eq`. -/
private lemma finrank_corootSpan_le :
finrank R P.corootSpan ≤ finrank R P.rootSpan := by
rw [← finrank_rootSpan_map_polarization_eq_finrank_corootSpan]
exact Submodule.finrank_map_le P.Polarization P.rootSpan

lemma finrank_corootSpan_eq :
finrank R P.corootSpan = finrank R P.rootSpan :=
le_antisymm P.finrank_corootSpan_le P.flip.finrank_corootSpan_le

lemma disjoint_rootSpan_ker_polarization :
Disjoint P.rootSpan (LinearMap.ker P.Polarization) := by
have : IsReflexive R M := PerfectPairing.reflexive_left P.toPerfectPairing
refine Submodule.disjoint_ker_of_finrank_eq (L := P.rootSpan) P.Polarization ?_
rw [finrank_rootSpan_map_polarization_eq_finrank_corootSpan, finrank_corootSpan_eq]

lemma mem_ker_polarization_of_rootForm_self_eq_zero {x : M} (hx : P.RootForm x x = 0) :
x ∈ LinearMap.ker P.Polarization := by
rw [LinearMap.mem_ker, Polarization_apply]
rw [rootForm_self_zero_iff] at hx
exact Fintype.sum_eq_zero _ fun i ↦ by simp [hx i]

lemma eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero {x : M}
(hx : x ∈ P.rootSpan) (hx' : P.RootForm x x = 0) :
x = 0 := by
rw [← Submodule.mem_bot (R := R), ← P.disjoint_rootSpan_ker_polarization.eq_bot]
exact ⟨hx, P.mem_ker_polarization_of_rootForm_self_eq_zero hx'⟩

lemma _root_.RootSystem.rootForm_anisotropic (P : RootSystem ι R M N) :
P.RootForm.toQuadraticMap.Anisotropic :=
fun x ↦ P.eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero <| by
simpa only [rootSpan, P.span_eq_top] using Submodule.mem_top

lemma rootForm_pos_of_nonzero {x : M} (hx : x ∈ P.rootSpan) (h : x ≠ 0) :
0 < P.RootForm x x := by
apply (P.rootForm_self_non_neg x).lt_of_ne
contrapose! h
exact eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero P hx h.symm

lemma rootForm_restrict_nondegenerate :
(P.RootForm.restrict P.rootSpan).Nondegenerate :=
LinearMap.IsRefl.nondegenerate_of_separatingLeft (LinearMap.IsSymm.isRefl fun x y => by
simp [rootForm_apply_apply, mul_comm]) fun x h => SetLike.coe_eq_coe.mp
(P.eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero (Submodule.coe_mem x) (h x))

end RootPairing
15 changes: 15 additions & 0 deletions docs/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1090,6 +1090,21 @@ @InProceedings{ deligne_formulaire
mrreviewer = {Jacques Velu}
}

@InProceedings{ demazure1970,
author = {Michel Demazure},
editor = {M. Demazure, A. Grothendieck},
title = {Expos\'{e} XXI, Don\'{e}es Radicielles},
booktitle = {S\'{e}minaire de G\'{e}ométrie Alg\'{e}brique du Bois
Marie - 1962-64 - Sch\'{e}mas en groupes - (SGA 3) - vol.
3, Structure des Sch\'{e}mas en Groupes Reductifs},
series = {Lecture Notes in Mathematics},
volume = {153},
pages = {85--155},
publisher = {Springer-Verlag},
year = {1970},
url = {https://wstein.org/sga/SGA3/Expo21-alpha.pdf}
}

@InProceedings{ demoura2015lean,
author = {de Moura, Leonardo and Kong, Soonho and Avigad, Jeremy and
van Doorn, Floris and von Raumer, Jakob},
Expand Down