Skip to content

Commit

Permalink
feat (LinearAlgebra/RootSystem/Finite): nondegeneracy of canonical bi…
Browse files Browse the repository at this point in the history
…linear form restricted to root span (#18569)

The canonical bilinear form for a root pairing over a linearly ordered commutative ring is nondegenerate when restricted to the span of roots.



Co-authored-by: leanprover-community-mathlib4-bot <[email protected]>
  • Loading branch information
2 people authored and TobiasLeichtfried committed Nov 21, 2024
1 parent 721bc41 commit 684a23b
Show file tree
Hide file tree
Showing 10 changed files with 257 additions and 9 deletions.
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3392,6 +3392,7 @@ import Mathlib.LinearAlgebra.Reflection
import Mathlib.LinearAlgebra.RootSystem.Basic
import Mathlib.LinearAlgebra.RootSystem.Defs
import Mathlib.LinearAlgebra.RootSystem.Finite.CanonicalBilinear
import Mathlib.LinearAlgebra.RootSystem.Finite.Nondegenerate
import Mathlib.LinearAlgebra.RootSystem.Hom
import Mathlib.LinearAlgebra.RootSystem.OfBilinear
import Mathlib.LinearAlgebra.RootSystem.RootPairingCat
Expand Down
14 changes: 13 additions & 1 deletion Mathlib/Algebra/Order/BigOperators/Ring/Finset.lean
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,6 @@ lemma sum_sq_le_sq_sum_of_nonneg (hf : ∀ i ∈ s, 0 ≤ f i) :
· exact hf i hi
· exact single_le_sum hf hi


end OrderedSemiring

section OrderedCommSemiring
Expand Down Expand Up @@ -142,6 +141,19 @@ lemma sum_mul_sq_le_sq_mul_sq (s : Finset ι) (f g : ι → R) :
sum_le_sum fun i _ ↦ two_mul_le_add_sq (f i * ∑ j ∈ s, g j ^ 2) (g i * ∑ j ∈ s, f j * g j)
_ = _ := by simp_rw [sum_add_distrib, mul_pow, ← sum_mul]; ring

theorem sum_mul_self_eq_zero_iff (s : Finset ι) (f : ι → R) :
∑ i ∈ s, f i * f i = 0 ↔ ∀ i ∈ s, f i = 0 := by
induction s using Finset.cons_induction with
| empty => simp
| cons i s his ih =>
simp only [Finset.sum_cons, Finset.mem_cons, forall_eq_or_imp]
refine ⟨fun hc => ?_, fun h => by simpa [h.1] using ih.mpr h.2
have hi : f i * f i ≤ 0 := by
rw [← hc, le_add_iff_nonneg_right]
exact Finset.sum_nonneg fun i _ ↦ mul_self_nonneg (f i)
have h : f i * f i = 0 := (eq_of_le_of_le (mul_self_nonneg (f i)) hi).symm
exact ⟨zero_eq_mul_self.mp h.symm, ih.mp (by rw [← hc, h, zero_add])⟩

end LinearOrderedCommSemiring

lemma abs_prod [LinearOrderedCommRing R] (s : Finset ι) (f : ι → R) :
Expand Down
7 changes: 7 additions & 0 deletions Mathlib/LinearAlgebra/Dimension/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -353,6 +353,13 @@ theorem rank_subsingleton [Subsingleton R] : Module.rank R M = 1 := by
subsingleton
· exact hw.trans_eq (Cardinal.mk_singleton _).symm

lemma rank_le_of_smul_regular {S : Type*} [CommSemiring S] [Algebra S R] [Module S M]
[IsScalarTower S R M] (L L' : Submodule R M) {s : S} (hr : IsSMulRegular M s)
(h : ∀ x ∈ L, s • x ∈ L') :
Module.rank R L ≤ Module.rank R L' :=
((Algebra.lsmul S R M s).restrict h).rank_le_of_injective <|
fun _ _ h ↦ by simpa using hr (Subtype.ext_iff.mp h)

end

end Module
12 changes: 11 additions & 1 deletion Mathlib/LinearAlgebra/Dimension/RankNullity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -203,13 +203,23 @@ lemma Submodule.finrank_quotient_add_finrank [Module.Finite R M] (N : Submodule
Submodule.finrank_eq_rank]
exact HasRankNullity.rank_quotient_add_rank _


/-- Rank-nullity theorem using `finrank` and subtraction. -/
lemma Submodule.finrank_quotient [Module.Finite R M] {S : Type*} [Ring S] [SMul R S] [Module S M]
[IsScalarTower R S M] (N : Submodule S M) : finrank R (M ⧸ N) = finrank R M - finrank R N := by
rw [← (N.restrictScalars R).finrank_quotient_add_finrank]
exact Nat.eq_sub_of_add_eq rfl

lemma Submodule.disjoint_ker_of_finrank_eq [NoZeroSMulDivisors R M] {N : Type*} [AddCommGroup N]
[Module R N] {L : Submodule R M} [Module.Finite R L] (f : M →ₗ[R] N)
(h : finrank R (L.map f) = finrank R L) :
Disjoint L (LinearMap.ker f) := by
refine disjoint_iff.mpr <| LinearMap.injective_domRestrict_iff.mp <| LinearMap.ker_eq_bot.mp <|
Submodule.rank_eq_zero.mp ?_
rw [← Submodule.finrank_eq_rank, Nat.cast_eq_zero]
rw [← LinearMap.range_domRestrict] at h
have := (LinearMap.ker (f.domRestrict L)).finrank_quotient_add_finrank
rwa [LinearEquiv.finrank_eq (f.domRestrict L).quotKerEquivRange, h, Nat.add_eq_left] at this

end Finrank

section
Expand Down
8 changes: 8 additions & 0 deletions Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
Original file line number Diff line number Diff line change
Expand Up @@ -465,4 +465,12 @@ theorem LinearMap.finrank_range_le [Module.Finite R M] (f : M →ₗ[R] M') :
finrank R (LinearMap.range f) ≤ finrank R M :=
finrank_le_finrank_of_rank_le_rank (lift_rank_range_le f) (rank_lt_aleph0 _ _)

theorem LinearMap.finrank_le_of_smul_regular {S : Type*} [CommSemiring S] [Algebra S R] [Module S M]
[IsScalarTower S R M] (L L' : Submodule R M) [Module.Finite R L'] {s : S}
(hr : IsSMulRegular M s) (h : ∀ x ∈ L, s • x ∈ L') :
Module.finrank R L ≤ Module.finrank R L' := by
refine finrank_le_finrank_of_rank_le_rank (lift_le.mpr <| rank_le_of_smul_regular L L' hr h) ?_
rw [← Module.finrank_eq_rank R L']
exact nat_lt_aleph0 (finrank R ↥L')

end StrongRankCondition
11 changes: 11 additions & 0 deletions Mathlib/LinearAlgebra/Dual.lean
Original file line number Diff line number Diff line change
Expand Up @@ -715,6 +715,17 @@ instance instFiniteDimensionalOfIsReflexive (K V : Type*)
rw [lift_id']
exact lt_trans h₁ h₂

instance [IsDomain R] : NoZeroSMulDivisors R M := by
refine (noZeroSMulDivisors_iff R M).mpr ?_
intro r m hrm
rw [or_iff_not_imp_left]
intro hr
suffices Dual.eval R M m = Dual.eval R M 0 from (bijective_dual_eval R M).injective this
ext n
simp only [Dual.eval_apply, map_zero, LinearMap.zero_apply]
suffices r • n m = 0 from eq_zero_of_ne_zero_of_mul_left_eq_zero hr this
rw [← LinearMap.map_smul_of_tower, hrm, LinearMap.map_zero]

end IsReflexive

end Module
Expand Down
6 changes: 6 additions & 0 deletions Mathlib/LinearAlgebra/RootSystem/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -374,6 +374,12 @@ lemma isReduced_iff : P.IsReduced ↔ ∀ i j : ι, i ≠ j →
· exact Or.inl (congrArg P.root h')
· exact Or.inr (h i j h' hLin)

/-- The linear span of roots. -/
abbrev rootSpan := span R (range P.root)

/-- The linear span of coroots. -/
abbrev corootSpan := span R (range P.coroot)

/-- The `Weyl group` of a root pairing is the group of automorphisms of the weight space generated
by reflections in roots. -/
def weylGroup : Subgroup (M ≃ₗ[R] M) :=
Expand Down
64 changes: 57 additions & 7 deletions Mathlib/LinearAlgebra/RootSystem/Finite/CanonicalBilinear.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,9 @@ Copyright (c) 2024 Scott Carnahan. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Carnahan
-/
import Mathlib.LinearAlgebra.RootSystem.Defs
import Mathlib.Algebra.Order.BigOperators.Ring.Finset
import Mathlib.Algebra.Ring.SumsOfSquares
import Mathlib.LinearAlgebra.RootSystem.Defs

/-!
# The canonical bilinear form on a finite root pairing
Expand All @@ -22,27 +23,28 @@ Weyl group.
* `Polarization`: A distinguished linear map from the weight space to the coweight space.
* `RootForm` : The bilinear form on weight space corresponding to `Polarization`.
## References:
* SGAIII Exp. XXI
* Bourbaki, Lie groups and Lie algebras
## Main results:
* `polarization_self_sum_of_squares` : The inner product of any weight vector is a sum of squares.
* `rootForm_reflection_reflection_apply` : `RootForm` is invariant with respect
to reflections.
* `rootForm_self_smul_coroot`: The inner product of a root with itself times the
corresponding coroot is equal to two times Polarization applied to the root.
* `rootForm_self_non_neg`: `RootForm` is positive semidefinite.
## References:
* [N. Bourbaki, *Lie groups and {L}ie algebras. {C}hapters 4--6*][bourbaki1968]
* [M. Demazure, *SGA III, Expos\'{e} XXI, Don\'{e}es Radicielles*][demazure1970]
## TODO (possibly in other files)
* Positivity and nondegeneracy
* Weyl-invariance
* Faithfulness of Weyl group action, and finiteness of Weyl group, for finite root systems.
* Relation to Coxeter weight. In particular, positivity constraints for finite root pairings mean
we restrict to weights between 0 and 4.
-/

open Function
open Set Function
open Module hiding reflection
open Submodule (span)

noncomputable section

Expand Down Expand Up @@ -132,6 +134,54 @@ lemma rootForm_root_self (j : ι) :
P.RootForm (P.root j) (P.root j) = ∑ (i : ι), (P.pairing j i) * (P.pairing j i) := by
simp [rootForm_apply_apply]

theorem range_polarization_domRestrict_le_span_coroot :
LinearMap.range (P.Polarization.domRestrict P.rootSpan) ≤ P.corootSpan := by
intro y hy
obtain ⟨x, hx⟩ := hy
rw [← hx, LinearMap.domRestrict_apply, Polarization_apply]
refine (mem_span_range_iff_exists_fun R).mpr ?_
use fun i => (P.toPerfectPairing x) (P.coroot i)
simp

end CommRing

section LinearOrderedCommRing

variable [Fintype ι] [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] (P : RootPairing ι R M N)

theorem rootForm_self_non_neg (x : M) : 0 ≤ P.RootForm x x :=
IsSumSq.nonneg (P.rootForm_self_sum_of_squares x)

theorem rootForm_self_zero_iff (x : M) :
P.RootForm x x = 0 ↔ ∀ i, P.coroot' i x = 0 := by
simp only [rootForm_apply_apply, PerfectPairing.toLin_apply, LinearMap.coe_comp, comp_apply,
Polarization_apply, map_sum, map_smul, smul_eq_mul]
convert Finset.sum_mul_self_eq_zero_iff Finset.univ fun i => P.coroot' i x
simp

lemma rootForm_root_self_pos (j : ι) :
0 < P.RootForm (P.root j) (P.root j) := by
simp only [LinearMap.coe_mk, AddHom.coe_mk, LinearMap.coe_comp, comp_apply,
rootForm_apply_apply, toLin_toPerfectPairing]
refine Finset.sum_pos' (fun i _ => (sq (P.pairing j i)) ▸ sq_nonneg (P.pairing j i)) ?_
use j
simp

lemma prod_rootForm_root_self_pos :
0 < ∏ i, P.RootForm (P.root i) (P.root i) :=
Finset.prod_pos fun i _ => rootForm_root_self_pos P i

lemma prod_rootForm_smul_coroot_mem_range_domRestrict (i : ι) :
(∏ a : ι, P.RootForm (P.root a) (P.root a)) • P.coroot i ∈
LinearMap.range (P.Polarization.domRestrict (P.rootSpan)) := by
obtain ⟨c, hc⟩ := Finset.dvd_prod_of_mem (fun a ↦ P.RootForm (P.root a) (P.root a))
(Finset.mem_univ i)
rw [hc, mul_comm, mul_smul, rootForm_self_smul_coroot]
refine LinearMap.mem_range.mpr ?_
use ⟨(c • 2 • P.root i), by aesop⟩
simp

end LinearOrderedCommRing

end RootPairing
128 changes: 128 additions & 0 deletions Mathlib/LinearAlgebra/RootSystem/Finite/Nondegenerate.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
/-
Copyright (c) 2024 Scott Carnahan. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Carnahan
-/
import Mathlib.LinearAlgebra.BilinearForm.Basic
import Mathlib.LinearAlgebra.Dimension.Localization
import Mathlib.LinearAlgebra.QuadraticForm.Basic
import Mathlib.LinearAlgebra.RootSystem.Finite.CanonicalBilinear
import Mathlib.LinearAlgebra.RootSystem.RootPositive

/-!
# Nondegeneracy of the polarization on a finite root pairing
We show that if the base ring of a finite root pairing is linearly ordered, then the canonical
bilinear form is root-positive and positive-definite on the span of roots.
From these facts, it is easy to show that Coxeter weights in a finite root pairing are bounded
above by 4. Thus, the pairings of roots and coroots in a root pairing are restricted to the
interval `[-4, 4]`. Furthermore, a linearly independent pair of roots cannot have Coxeter weight 4.
For the case of crystallographic root pairings, we are thus reduced to a finite set of possible
options for each pair.
Another application is to the faithfulness of the Weyl group action on roots, and finiteness of the
Weyl group.
## Main results:
* `RootPairing.rootForm_rootPositive`: `RootForm` is root-positive.
* `RootPairing.polarization_domRestrict_injective`: The polarization restricted to the span of
roots is injective.
* `RootPairing.rootForm_pos_of_nonzero`: `RootForm` is strictly positive on non-zero linear
combinations of roots. This gives us a convenient way to eliminate certain Dynkin diagrams from
the classification, since it suffices to produce a nonzero linear combination of simple roots with
non-positive norm.
## References:
* [N. Bourbaki, *Lie groups and {L}ie algebras. {C}hapters 4--6*][bourbaki1968]
* [M. Demazure, *SGA III, Expos\'{e} XXI, Don\'{e}es Radicielles*][demazure1970]
## Todo
* Weyl-invariance of `RootForm` and `CorootForm`
* Faithfulness of Weyl group perm action, and finiteness of Weyl group, over ordered rings.
* Relation to Coxeter weight. In particular, positivity constraints for finite root pairings mean
we restrict to weights between 0 and 4.
-/

noncomputable section

open Set Function
open Module hiding reflection
open Submodule (span)

namespace RootPairing

variable {ι R M N : Type*}

variable [Fintype ι] [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] (P : RootPairing ι R M N)

lemma rootForm_rootPositive : IsRootPositive P P.RootForm where
zero_lt_apply_root i := P.rootForm_root_self_pos i
symm := P.rootForm_symmetric
apply_reflection_eq := P.rootForm_reflection_reflection_apply

instance : Module.Finite R P.rootSpan := Finite.span_of_finite R <| finite_range P.root

instance : Module.Finite R P.corootSpan := Finite.span_of_finite R <| finite_range P.coroot

@[simp]
lemma finrank_rootSpan_map_polarization_eq_finrank_corootSpan :
finrank R (P.rootSpan.map P.Polarization) = finrank R P.corootSpan := by
rw [← LinearMap.range_domRestrict]
apply (Submodule.finrank_mono P.range_polarization_domRestrict_le_span_coroot).antisymm
have : IsReflexive R N := PerfectPairing.reflexive_right P.toPerfectPairing
refine LinearMap.finrank_le_of_smul_regular P.corootSpan
(LinearMap.range (P.Polarization.domRestrict P.rootSpan))
(smul_right_injective N (Ne.symm (ne_of_lt P.prod_rootForm_root_self_pos)))
fun _ hx => ?_
obtain ⟨c, hc⟩ := (mem_span_range_iff_exists_fun R).mp hx
rw [← hc, Finset.smul_sum]
simp_rw [smul_smul, mul_comm, ← smul_smul]
exact Submodule.sum_smul_mem (LinearMap.range (P.Polarization.domRestrict P.rootSpan)) c
(fun c _ ↦ prod_rootForm_smul_coroot_mem_range_domRestrict P c)

/-- An auxiliary lemma en route to `RootPairing.finrank_corootSpan_eq`. -/
private lemma finrank_corootSpan_le :
finrank R P.corootSpan ≤ finrank R P.rootSpan := by
rw [← finrank_rootSpan_map_polarization_eq_finrank_corootSpan]
exact Submodule.finrank_map_le P.Polarization P.rootSpan

lemma finrank_corootSpan_eq :
finrank R P.corootSpan = finrank R P.rootSpan :=
le_antisymm P.finrank_corootSpan_le P.flip.finrank_corootSpan_le

lemma disjoint_rootSpan_ker_polarization :
Disjoint P.rootSpan (LinearMap.ker P.Polarization) := by
have : IsReflexive R M := PerfectPairing.reflexive_left P.toPerfectPairing
refine Submodule.disjoint_ker_of_finrank_eq (L := P.rootSpan) P.Polarization ?_
rw [finrank_rootSpan_map_polarization_eq_finrank_corootSpan, finrank_corootSpan_eq]

lemma mem_ker_polarization_of_rootForm_self_eq_zero {x : M} (hx : P.RootForm x x = 0) :
x ∈ LinearMap.ker P.Polarization := by
rw [LinearMap.mem_ker, Polarization_apply]
rw [rootForm_self_zero_iff] at hx
exact Fintype.sum_eq_zero _ fun i ↦ by simp [hx i]

lemma eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero {x : M}
(hx : x ∈ P.rootSpan) (hx' : P.RootForm x x = 0) :
x = 0 := by
rw [← Submodule.mem_bot (R := R), ← P.disjoint_rootSpan_ker_polarization.eq_bot]
exact ⟨hx, P.mem_ker_polarization_of_rootForm_self_eq_zero hx'⟩

lemma _root_.RootSystem.rootForm_anisotropic (P : RootSystem ι R M N) :
P.RootForm.toQuadraticMap.Anisotropic :=
fun x ↦ P.eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero <| by
simpa only [rootSpan, P.span_eq_top] using Submodule.mem_top

lemma rootForm_pos_of_nonzero {x : M} (hx : x ∈ P.rootSpan) (h : x ≠ 0) :
0 < P.RootForm x x := by
apply (P.rootForm_self_non_neg x).lt_of_ne
contrapose! h
exact eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero P hx h.symm

lemma rootForm_restrict_nondegenerate :
(P.RootForm.restrict P.rootSpan).Nondegenerate :=
LinearMap.IsRefl.nondegenerate_of_separatingLeft (LinearMap.IsSymm.isRefl fun x y => by
simp [rootForm_apply_apply, mul_comm]) fun x h => SetLike.coe_eq_coe.mp
(P.eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero (Submodule.coe_mem x) (h x))

end RootPairing
15 changes: 15 additions & 0 deletions docs/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1090,6 +1090,21 @@ @InProceedings{ deligne_formulaire
mrreviewer = {Jacques Velu}
}

@InProceedings{ demazure1970,
author = {Michel Demazure},
editor = {M. Demazure, A. Grothendieck},
title = {Expos\'{e} XXI, Don\'{e}es Radicielles},
booktitle = {S\'{e}minaire de G\'{e}ométrie Alg\'{e}brique du Bois
Marie - 1962-64 - Sch\'{e}mas en groupes - (SGA 3) - vol.
3, Structure des Sch\'{e}mas en Groupes Reductifs},
series = {Lecture Notes in Mathematics},
volume = {153},
pages = {85--155},
publisher = {Springer-Verlag},
year = {1970},
url = {https://wstein.org/sga/SGA3/Expo21-alpha.pdf}
}

@InProceedings{ demoura2015lean,
author = {de Moura, Leonardo and Kong, Soonho and Avigad, Jeremy and
van Doorn, Floris and von Raumer, Jakob},
Expand Down

0 comments on commit 684a23b

Please sign in to comment.