Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Upgrade Lean and mathlib #148

Merged
merged 7 commits into from
Oct 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion leanpkg.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,4 +5,4 @@ lean_version = "leanprover-community/lean:3.50.3"
path = "src"

[dependencies]
mathlib = {git = "https://github.com/leanprover-community/mathlib", rev = "d1723c047a091ae3fca0af8aeab1743e1a898611"}
mathlib = {git = "https://github.com/leanprover-community/mathlib", rev = "9dba31df156d9d65b9d78db449542ca73d147c68"}
4 changes: 2 additions & 2 deletions src/demos/category_theory.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import category_theory.category.basic
import category_theory.functor
import category_theory.functor.basic

import algebra.category.Group.images
import algebra.category.Group.colimits
Expand All @@ -11,7 +11,7 @@ import category_theory.abelian.basic
import category_theory.limits.shapes.finite_limits

import topology.instances.real
import topology.category.Top
import topology.category.Top.limits
import topology.category.UniformSpace


Expand Down
14 changes: 7 additions & 7 deletions src/demos/linalg.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import algebra.module
import algebra.module.basic
import analysis.inner_product_space.basic
import data.matrix.notation
import data.matrix.dmatrix
Expand All @@ -20,7 +20,7 @@
not necessarily a field.
-/

#print module

Check notice on line 23 in src/demos/linalg.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/demos/linalg.lean:23:0: @[_ext_core id.{1} name module.ext, class, ext option.none.{0} name, protect_proj list.nil.{0} name] structure module : Π (R : Type u) (M : Type v) [_inst_1 : semiring R] [_inst_2 : add_comm_monoid M], Type (max u v) fields: module.to_distrib_mul_action : Π {R : Type u} {M : Type v} [_inst_1 : semiring R] [_inst_2 : add_comm_monoid M] [self : module R M], distrib_mul_action R M module.add_smul : ∀ {R : Type u} {M : Type v} [_inst_1 : semiring R] [_inst_2 : add_comm_monoid M] [self : module R M] (r s : R) (x : M), (r + s) • x = r • x + s • x module.zero_smul : ∀ {R : Type u} {M : Type v} [_inst_1 : semiring R] [_inst_2 : add_comm_monoid M] [self : module R M] (x : M), 0 • x = 0
-- class module (R : Type u) (M : Type v) [semiring R] [add_comm_monoid M]
-- extends distrib_mul_action R M := ...

Expand All @@ -29,12 +29,12 @@
then a module structure over `R` on `M` has a scalar multiplication `•` (`has_smul.smul`),
which satisfies the following identities:
-/
#check add_smul -- ∀ (r s : R) (x : M), (r + s) • x = r • x + s • x

Check notice on line 32 in src/demos/linalg.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/demos/linalg.lean:32:0: add_smul : ∀ (r s : ?M_1) (x : ?M_2), (r + s) • x = r • x + s • x
#check smul_add -- ∀ (r : R) (x y : M), r • (x + y) = r • x + r • y

Check notice on line 33 in src/demos/linalg.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/demos/linalg.lean:33:0: smul_add : ∀ (a : ?M_1) (b₁ b₂ : ?M_2), a • (b₁ + b₂) = a • b₁ + a • b₂
#check mul_smul -- ∀ (r s : R) (x : M), (r * s) • x = r • (s • x)

Check notice on line 34 in src/demos/linalg.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/demos/linalg.lean:34:0: mul_smul : ∀ (x y : ?M_1) (b : ?M_2), (x * y) • b = x • y • b
#check one_smul -- ∀ (x : M), 1 • x = x

Check notice on line 35 in src/demos/linalg.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/demos/linalg.lean:35:0: one_smul : ∀ (M : Type u_1) {α : Type u_2} [_inst_1 : monoid M] [_inst_2 : mul_action M α] (b : α), 1 • b = b
#check zero_smul -- ∀ (x : M), 0 • x = 0

Check notice on line 36 in src/demos/linalg.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/demos/linalg.lean:36:0: zero_smul : ∀ (R : Type u_1) {M : Type u_2} [_inst_1 : has_zero R] [_inst_2 : has_zero M] [_inst_3 : smul_with_zero R M] (m : M), 0 • m = 0
#check smul_zero -- ∀ (r : R), r • 0 = 0

Check notice on line 37 in src/demos/linalg.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/demos/linalg.lean:37:0: smul_zero : ∀ (a : ?M_1), a • 0 = 0
/-
These equations define modules (and vector spaces).
-/
Expand Down Expand Up @@ -213,14 +213,14 @@
Like vectors in `n → R`, matrices are typically indexed over `fin k`.
To define a matrix, you map the indexes to the entry:
-/
def example_matrix : matrix (fin 2) (fin 3) ℤ := λ i j, i + j
def example_matrix : matrix (fin 2) (fin 3) ℤ := matrix.of (λ i j, (↑i + ↑j : ℤ))
#eval example_matrix 1 2

/- Like vectors, we can use `![...]` notation to define matrices: -/
/- Simiilarly to vectors, we can use `!![...]` notation to define matrices: -/
def other_example_matrix : matrix (fin 3) (fin 2) ℤ :=
![![0, 1],
![1, 2],
![2, 3]]
!![0, 1;
1, 2;
2, 3]

/- We have the 0 matrix and the sum of two matrices: -/
example (i j) : (0 : matrix m n R) i j = 0 := dmatrix.zero_apply i j
Expand Down Expand Up @@ -262,7 +262,7 @@
-/
variables [decidable_eq m] [decidable_eq n]
variables (v : basis m R M) (w : basis n R N)
#check linear_map.to_matrix v w -- (M →ₗ[R] N) ₗ[R] matrix n m R
#check linear_map.to_matrix v w -- (M →ₗ[R] N) ₗ[R] matrix n m R

/-
Invertible (i.e. nonsingular) matrices have an inverse operation denoted by `⁻¹`.
Expand Down
2 changes: 1 addition & 1 deletion src/exercises_sources/friday/analysis.lean
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ namespace lftcm
noncomputable theory

open real
open_locale topological_space filter classical real
open_locale topology filter classical real

/-!
# Derivatives
Expand Down
16 changes: 11 additions & 5 deletions src/exercises_sources/friday/manifolds.lean
Original file line number Diff line number Diff line change
Expand Up @@ -457,13 +457,13 @@ be a smooth manifold. -/
-- the type `tangent_bundle 𝓡1 myℝ` makes sense
#check tangent_bundle 𝓡1 myℝ

/- The tangent space above a point of `myℝ` is just a one-dimensional vector space (identified with `ℝ`).
/- The tangent space above a point of `myℝ` is just a one-dimensional vector space
(identified with `ℝ`).
So, one can prescribe an element of the tangent bundle as a pair (more on this below) -/
example : tangent_bundle 𝓡1 myℝ := ⟨(4 : ℝ), 0⟩

/- Construct the smooth manifold structure on the tangent bundle. Hint: the answer is a one-liner,
and this instance is not really needed. -/
instance tangent_bundle_myℝ : smooth_manifold_with_corners (𝓡1.prod 𝓡1) (tangent_bundle 𝓡1 myℝ) :=
/- Type-class inference can construct the smooth manifold structure on the tangent bundle. -/
example : smooth_manifold_with_corners (𝓡1.prod 𝓡1) (tangent_bundle 𝓡1 myℝ) :=
sorry

/-
Expand All @@ -472,7 +472,13 @@ NB: the model space for the tangent bundle to a product manifold or a tangent sp
structures with model `ℝ × ℝ`, the identity one and the product one, which are not definitionally
equal. And this would be bad.
-/
#check tangent_bundle.charted_space 𝓡1 myℝ
example : charted_space (model_prod ℝ ℝ) (tangent_bundle 𝓡1 myℝ) :=
sorry

/-
The charts of any smooth vector bundle are characterized by `fiber_bundle.charted_space_chart_at`
-/
#check @fiber_bundle.charted_space_chart_at

/- A smooth map between manifolds induces a map between their tangent bundles. In `mathlib` this is
called the `tangent_map` (you might instead know it as the "differential" or "pushforward" of the
Expand Down
2 changes: 1 addition & 1 deletion src/exercises_sources/friday/topology.lean
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import topology.metric_space.basic

open_locale classical filter topological_space
open_locale classical filter topology

namespace lftcm
open filter set
Expand Down Expand Up @@ -53,7 +53,7 @@
The filter axiom are also available as standalone lemmas where the filter argument is implicit
Compare
-/
#check @filter.sets_of_superset

Check notice on line 56 in src/exercises_sources/friday/topology.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/exercises_sources/friday/topology.lean:56:0: sets_of_superset : ∀ {α : Type u_1} (self : filter α) {x y : set α}, x ∈ self.sets → x ⊆ y → y ∈ self.sets
#check @mem_of_superset

-- And analogously:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

/-!
Let's show that taking polynomials over a ring is functor `Ring ⥤ Ring`.
Expand All @@ -12,10 +12,10 @@
* use `polynomial.map_ring_hom`
-/

def Ring.polynomial : Ring ⥤ Ring :=

Check warning on line 15 in src/exercises_sources/thursday/category_theory/exercise2.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/exercises_sources/thursday/category_theory/exercise2.lean:15:0: declaration 'Ring.polynomial' uses sorry
sorry

def CommRing.polynomial : CommRing ⥤ CommRing :=

Check warning on line 18 in src/exercises_sources/thursday/category_theory/exercise2.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/exercises_sources/thursday/category_theory/exercise2.lean:18:0: declaration 'CommRing.polynomial' uses sorry
sorry

open category_theory
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import algebra.category.Ring
import algebra.category.Ring.basic
import category_theory.yoneda
import data.polynomial.algebra_map

Expand Down
1 change: 1 addition & 0 deletions src/exercises_sources/thursday/groups_rings_fields.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ import linear_algebra.finite_dimensional
import ring_theory.algebraic
import data.zmod.basic
import data.real.basic
import data.nat.choose.dvd
import tactic

/-!
Expand Down
10 changes: 6 additions & 4 deletions src/exercises_sources/thursday/linear_algebra.lean
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
import analysis.inner_product_space.basic
import data.matrix.notation
import linear_algebra.bilinear_form
import linear_algebra.matrix
import tactic

universes u v
Expand Down Expand Up @@ -134,7 +133,7 @@ Hints:
* Use the `simp` tactic to simplify `(x + y) i` to `x i + y i` and `(s • x) i` to `s * x i`.
* To deal with equalities containing many `+` and `*` symbols, use the `ring` tactic.
-/
def A : matrix (fin 2) (fin 2) R := ![![1, 0], ![-2, 1]]
def A : matrix (fin 2) (fin 2) R := !![1, 0; -2, 1]
def your_bilin_form : bilin_form R (fin 2 → R) :=
sorry

Expand Down Expand Up @@ -166,10 +165,13 @@ Hints:
* Try the lemmas `finset.sum_nonneg`, `finset.sum_eq_zero_iff_of_nonneg`,
`mul_self_nonneg` and `mul_self_eq_zero`.
-/
noncomputable instance : inner_product_space ℝ (n → ℝ) :=
inner_product_space.of_core
noncomputable instance : normed_add_comm_group (n → ℝ):=
@inner_product_space.of_core.to_normed_add_comm_group ℝ (n → ℝ) _ _ _
sorry

noncomputable instance : inner_product_space ℝ (n → ℝ) :=
inner_product_space.of_core _

end pi

end exercise3
Expand Down
2 changes: 1 addition & 1 deletion src/exercises_sources/tuesday/numbers.lean
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import tactic
import data.real.basic
import data.int.gcd
import number_theory.padics
import number_theory.padics.padic_numbers
import data.nat.prime_norm_num

/-!
Expand Down
1 change: 1 addition & 0 deletions src/exercises_sources/tuesday/sets.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import data.set.basic data.set.lattice data.nat.parity
import data.nat.prime
import tactic.linarith

open set nat function
Expand Down
4 changes: 2 additions & 2 deletions src/for_mathlib/manifolds.lean
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ include hp
lemma pi_Lp.norm_coord_le_norm (x : pi_Lp p α) (i : ι) : ‖x i‖ ≤ ‖x‖ :=
begin
unfreezingI { rcases p.trichotomy with (rfl | rfl | h) },
{ exact false.elim (lt_irrefl _ (ennreal.zero_lt_one.trans_le hp.out)) },
{ exact false.elim (lt_irrefl _ (zero_lt_one.trans_le hp.out)) },
{ rw pi_Lp.norm_eq_csupr,
exact le_cSup (finite_range _).bdd_above (mem_range_self _) },
{ calc
Expand Down Expand Up @@ -74,7 +74,7 @@ begin
begin
refine (F i).mk_continuous 1 (λ x, _),
unfreezingI { rcases p.trichotomy with (rfl | rfl | h) },
{ exact false.elim (lt_irrefl _ (ennreal.zero_lt_one.trans_le hp.out)) },
{ exact false.elim (lt_irrefl _ (zero_lt_one.trans_le hp.out)) },
{ haveI : nonempty ι := ⟨i⟩,
simp only [pi_Lp.norm_eq_csupr, linear_map.coe_mk, one_mul],
refine cSup_le (range_nonempty _) _,
Expand Down
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise2/hint1.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

noncomputable theory -- the default implementation of polynomials is noncomputable

Expand All @@ -10,11 +10,11 @@
{ obj := sorry,
map := sorry, }

def CommRing.polynomial : CommRing ⥤ CommRing :=

Check warning on line 13 in src/hints/category_theory/exercise2/hint1.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/hints/category_theory/exercise2/hint1.lean:13:0: declaration 'CommRing.polynomial' uses sorry
sorry

open category_theory

def commutes :

Check warning on line 18 in src/hints/category_theory/exercise2/hint1.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/hints/category_theory/exercise2/hint1.lean:18:0: declaration 'commutes' uses sorry
(forget₂ CommRing Ring) ⋙ Ring.polynomial ≅ CommRing.polynomial ⋙ (forget₂ CommRing Ring) :=
sorry
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise2/hint2.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

noncomputable theory -- the default implementation of polynomials is noncomputable

Expand All @@ -18,7 +18,7 @@
end,
map := sorry, }

def CommRing.polynomial : CommRing ⥤ CommRing :=

Check warning on line 21 in src/hints/category_theory/exercise2/hint2.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/hints/category_theory/exercise2/hint2.lean:21:0: declaration 'CommRing.polynomial' uses sorry
sorry

open category_theory
Expand Down
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise2/hint3.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

noncomputable theory -- the default implementation of polynomials is noncomputable

Expand Down Expand Up @@ -32,11 +32,11 @@
-- The next hint file walks you through doing this.
end, }

def CommRing.polynomial : CommRing ⥤ CommRing :=

Check warning on line 35 in src/hints/category_theory/exercise2/hint3.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/hints/category_theory/exercise2/hint3.lean:35:0: declaration 'CommRing.polynomial' uses sorry
sorry

open category_theory

def commutes :

Check warning on line 40 in src/hints/category_theory/exercise2/hint3.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/hints/category_theory/exercise2/hint3.lean:40:0: declaration 'commutes' uses sorry
(forget₂ CommRing Ring) ⋙ Ring.polynomial ≅ CommRing.polynomial ⋙ (forget₂ CommRing Ring) :=
sorry
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise2/hint4.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

noncomputable theory -- the default implementation of polynomials is noncomputable

Expand Down
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise2/hint5.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

noncomputable theory -- the default implementation of polynomials is noncomputable

Expand All @@ -9,6 +9,6 @@
{ obj := λ R, Ring.of (polynomial R),
map := λ R S f, polynomial.map_ring_hom f }

def CommRing.polynomial : CommRing ⥤ CommRing :=

Check warning on line 12 in src/hints/category_theory/exercise2/hint5.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/hints/category_theory/exercise2/hint5.lean:12:0: declaration 'CommRing.polynomial' uses sorry
-- Let's just copy and paste the construction above, replace `Ring.of` with `CommRing.of`!
sorry
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise2/hint6.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

noncomputable theory -- the default implementation of polynomials is noncomputable

Expand Down
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise2/hint7.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

noncomputable theory -- the default implementation of polynomials is noncomputable

Expand Down
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise4/hint1.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import algebra.category.Ring
import algebra.category.Ring.basic
import category_theory.yoneda
import data.polynomial.algebra_map

Expand Down
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise4/hint2.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import algebra.category.Ring
import algebra.category.Ring.basic
import category_theory.yoneda
import data.polynomial.algebra_map

Expand Down
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise4/hint3.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import algebra.category.Ring
import algebra.category.Ring.basic
import category_theory.yoneda
import data.polynomial.algebra_map

Expand Down
2 changes: 1 addition & 1 deletion src/hints/category_theory/exercise4/hint4.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import algebra.category.Ring
import algebra.category.Ring.basic
import category_theory.yoneda
import data.polynomial.algebra_map

Expand Down
40 changes: 26 additions & 14 deletions src/solutions/friday/manifolds.lean
Original file line number Diff line number Diff line change
Expand Up @@ -510,13 +510,13 @@ be a smooth manifold. -/
-- the type `tangent_bundle 𝓡1 myℝ` makes sense
#check tangent_bundle 𝓡1 myℝ

/- The tangent space above a point of `myℝ` is just a one-dimensional vector space (identified with `ℝ`).
/- The tangent space above a point of `myℝ` is just a one-dimensional vector space
(identified with `ℝ`).
So, one can prescribe an element of the tangent bundle as a pair (more on this below) -/
example : tangent_bundle 𝓡1 myℝ := ⟨(4 : ℝ), 0⟩

/- Construct the smooth manifold structure on the tangent bundle. Hint: the answer is a one-liner,
and this instance is not really needed. -/
instance tangent_bundle_myℝ : smooth_manifold_with_corners (𝓡1.prod 𝓡1) (tangent_bundle 𝓡1 myℝ) :=
/- Type-class inference can construct the smooth manifold structure on the tangent bundle. -/
example : smooth_manifold_with_corners (𝓡1.prod 𝓡1) (tangent_bundle 𝓡1 myℝ) :=
-- sorry
by apply_instance
-- sorry
Expand All @@ -527,7 +527,15 @@ NB: the model space for the tangent bundle to a product manifold or a tangent sp
structures with model `ℝ × ℝ`, the identity one and the product one, which are not definitionally
equal. And this would be bad.
-/
#check tangent_bundle.charted_space 𝓡1 myℝ
example : charted_space (model_prod ℝ ℝ) (tangent_bundle 𝓡1 myℝ) :=
-- sorry
by apply_instance
-- sorry

/-
The charts of any smooth vector bundle are characterized by `fiber_bundle.charted_space_chart_at`
-/
#check @fiber_bundle.charted_space_chart_at

/- A smooth map between manifolds induces a map between their tangent bundles. In `mathlib` this is
called the `tangent_map` (you might instead know it as the "differential" or "pushforward" of the
Expand Down Expand Up @@ -559,8 +567,11 @@ begin
let p : tangent_bundle 𝓡1 myℝ := ⟨(4 : ℝ), 0⟩,
let F := chart_at (model_prod ℝ ℝ) p,
have A : ¬ ((4 : ℝ) < 1), by norm_num,
have S : F.source = univ, by simp [F, chart_at, A, @local_homeomorph.refl_source ℝ _],
have T : F.target = univ, by simp [F, chart_at, A, @local_homeomorph.refl_target ℝ _],
have S : F.source = univ,
by simp [F, fiber_bundle.charted_space_chart_at, chart_at, A, local_homeomorph.refl_source ℝ],
have T : F.target = univ,
by simp [F, fiber_bundle.charted_space_chart_at, chart_at, A, local_homeomorph.refl_source ℝ,
local_homeomorph.refl_target ℝ],
exact F.to_homeomorph_of_source_eq_univ_target_eq_univ S T,
-- sorry
end
Expand Down Expand Up @@ -636,13 +647,14 @@ begin
-- are left with a statement speaking of derivatives of real functions, without any manifold code left.
-- sorry
have : ¬ ((3 : ℝ) < 1), by norm_num,
simp only [chart_at, this, mem_Ioo, if_false, and_false],
dsimp [tangent_bundle_core, basic_smooth_vector_bundle_core.chart, bundle.total_space.proj],
simp only [chart_at, fiber_bundle.charted_space_chart_at, this, mem_Ioo, if_false, and_false,
local_homeomorph.trans_apply, tangent_bundle.trivialization_at_apply, fderiv_within_univ]
with mfld_simps,
split_ifs,
{ simp only [chart_at, h, my_first_local_homeo, if_true, fderiv_within_univ, mem_Ioo, fderiv_id',
continuous_linear_map.coe_id', continuous_linear_map.neg_apply, fderiv_neg] with mfld_simps },
{ simp only [chart_at, h, fderiv_within_univ, mem_Ioo, if_false, @local_homeomorph.refl_symm ℝ,
fderiv_id, continuous_linear_map.coe_id'] with mfld_simps }
{ simp only [my_first_local_homeo, fderiv_neg, fderiv_id',
continuous_linear_map.coe_id', continuous_linear_map.neg_apply] with mfld_simps },
{ simp only [@local_homeomorph.refl_symm ℝ, fderiv_id,
continuous_linear_map.coe_id'] with mfld_simps }
-- sorry
end

Expand Down Expand Up @@ -946,7 +958,7 @@ def G : tangent_bundle (𝓡∂ 1) (Icc (0 : ℝ) 1) → (Icc (0 : ℝ) 1) ×
lemma continuous_G : continuous G :=
begin
-- sorry
apply continuous.prod_mk (tangent_bundle_proj_continuous _ _),
refine (continuous_proj (euclidean_space ℝ (fin 1)) (tangent_space (𝓡∂ 1))).prod_mk _,
refine continuous_snd.comp _,
apply continuous.comp (homeomorph.continuous _),
apply cont_mdiff.continuous_tangent_map cont_mdiff_g le_top,
Expand Down
2 changes: 1 addition & 1 deletion src/solutions/friday/topology.lean
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import topology.metric_space.basic

open_locale classical filter topological_space
open_locale classical filter topology

namespace lftcm
open filter set
Expand Down Expand Up @@ -94,7 +94,7 @@
The filter axiom are also available as standalone lemmas where the filter argument is implicit
Compare
-/
#check @filter.sets_of_superset

Check notice on line 97 in src/solutions/friday/topology.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/solutions/friday/topology.lean:97:0: sets_of_superset : ∀ {α : Type u_1} (self : filter α) {x y : set α}, x ∈ self.sets → x ⊆ y → y ∈ self.sets
#check @mem_of_superset

-- And analogously:
Expand Down
2 changes: 1 addition & 1 deletion src/solutions/thursday/category_theory/exercise2.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import algebra.category.Ring.basic
import data.polynomial
import data.polynomial.lifts

/-!
Let's show that taking polynomials over a ring is functor `Ring ⥤ Ring`.
Expand Down
2 changes: 1 addition & 1 deletion src/solutions/thursday/category_theory/exercise4.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import algebra.category.Ring
import algebra.category.Ring.basic
import category_theory.yoneda
import data.polynomial.algebra_map

Expand All @@ -24,7 +24,7 @@
ring homomorphism from `ℤ` into any commutative ring.
-/
example (R : CommRing) : ℤ →+* R :=
by library_search

Check notice on line 27 in src/solutions/thursday/category_theory/exercise4.lean

View workflow job for this annotation

GitHub Actions / Build project

/home/runner/work/lftcm2020/lftcm2020/src/solutions/thursday/category_theory/exercise4.lean:27:3: Try this: exact algebra_map ℤ ↥R

/-!
Also useful may be the functions
Expand Down
4 changes: 2 additions & 2 deletions src/solutions/thursday/groups_rings_fields.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ import linear_algebra.finite_dimensional
import ring_theory.algebraic
import data.zmod.basic
import data.real.basic
import data.nat.choose.dvd
import tactic

/-!
Expand Down Expand Up @@ -292,8 +293,7 @@ begin
{ intros i hi hi0,
convert mul_zero _,
rw char_p.cast_eq_zero_iff K p,
apply nat.prime.dvd_choose_self _ _ (fact.out p.prime),
{ rwa pos_iff_ne_zero },
apply nat.prime.dvd_choose_self (fact.out p.prime) hi0 _,
{ simpa using hi } },
{ intro h,
simp only [le_zero_iff, mem_range, not_lt] at h,
Expand Down
Loading
Loading