Skip to content
forked from gasevi/pyreclab

Pyreclab is a library for quickly testing and prototyping of traditional recommender system methods, such as User KNN, Item KNN and FunkSVD Collaborative Filtering. It is developed and maintained by Gabriel Sepúlveda and Vicente Domínguez, advised by Prof. Denis Parra, all of them in Computer Science Department at PUC Chile, GRIMA Lab and SocVis…

License

Notifications You must be signed in to change notification settings

lalanne/pyreclab

 
 

Repository files navigation

Pyreclab: Recommendation lab for Python

Overview

Pyreclab is a recommendation library designed for training recommendation models with a friendly and easy-to-use interface, keeping a good performance in memory and CPU usage.

In order to achieve this, Pyreclab is built as a Python module to give a friendly access to its algorithms and it is completely developed in C++ to avoid the lack of performace of the interpreted languages.

At this moment, the following recommendation algorithms are supported:

Rating Prediction

  • User Avgerage
  • Item Average
  • Slope One
  • User Based KNN
  • Item Based KNN
  • Funk's SVD

Item Recommendation

  • Most Popular

Although Pyreclab can be compiled on most popular operating system, it has been tested on the following distributions.

Operating System Version
Ubuntu 16.04
CentOS 6.4
Mac OS X 10.11 ( El Capitan )
Mac OS X 10.12 ( Sierra )

Citations

If you use this library, please cite:

@inproceedings{1706.06291v2, author = {Gabriel Sepulveda and Vicente Dominguez and Denis Parra}, title = {pyRecLab: A Software Library for Quick Prototyping of Recommender Systems}, year = {2017}, month = {August}, eprint = {arXiv:1706.06291v2}, keywords = {Recommender Systems, Software Development, Recommender Library, Python Library} }

Check out our paper

Build and install

1.- Before starting, verify you have libboost-dev and cmake installed on your system. If not, install it through your distribution's package manager, as shown next.

Debian based OS's ( Ubuntu )

$ sudo apt-get install cmake
$ sudo apt-get install libboost-dev

RedHat based OS's ( CentOS )

$ yum install cmake
$ yum install boost-devel

MAC OS X

$ brew install cmake
$ brew install boost

2.- Clone the source code of Pyreclab in a local directory.

$ git clone https://github.com/gasevi/pyreclab.git

3.- Build the Python module ( default: Python 2.7 ).

$ cd pyreclab
$ cmake .
$ make

By default, PyRecLab will be compiled for Python 2.7. If you want to build it for Python 3.x, you can execute the following steps:

$ cd pyreclab
$ cmake -DCMAKE_PYTHON_VERSION=3.x .
$ make

4.- Install PyRecLab.

$ sudo make install

API Documentation

Pyreclab provides the following classes for representing each of the recommendation algorithm currenly supported:

>>> from pyreclab import <RecAlg>

or import the entire module as you prefer

>>> import pyreclab

Afer that, to create an instance of any of these clases, you must provide a dataset file with the training information, which must contain the fields user_id, item_id and rating.

The following example shows the generic format for creating one of these instances.

>>> obj = pyreclab.RecAlg( dataset = filename,
                           dlmchar = b'\t',
                           header = False,
                           usercol = 0,
                           itemcol = 1,
                           ratingcol = 2 )

Where RecAlg represents the recommendation algorithm chosen from the previous list, and its parameters are presented in the next table.

Parameter Type Default value Description
dataset mandatory N.A. Dataset filename with fields: userid, itemid and rating
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Whether dataset filename contains a header line to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file

Due to the different nature of each algorithm, their train methods can have different parameters. For this reason, they have been described for each class as shown below.

  • Training
>>> obj.train()
  • Rating prediction
>>> prediction = obj.predict( userId, itemId )
Parameter Type Default value Description
userId mandatory N.A. User identifier
itemId mandatory N.A. Item identifier
  • Top-N item recommendation
>>> ranking = obj.recommend( userId, topN, includeRated )
Parameter Type Default value Description
userId mandatory N.A. User identifier
topN optional 10 Top N items to recommend
includeRated optional false Include rated items in ranking generation
  • Testing and evaluation for prediction
>>> predictionList, mae, rmse = obj.test( input_file = testset,
                                          dlmchar = b'\t',
                                          header = False,
                                          usercol = 0,
                                          itemcol = 1,
                                          ratingcol = 2,
                                          output_file = 'predictions.csv' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
output_file optional N.A. Output file to write predictions
  • Testing for recommendation
>>> recommendationList = obj.testrec( input_file = testset,
                                      dlmchar = b'\t',
                                      header = False,
                                      usercol = 0,
                                      itemcol = 1,
                                      ratingcol = 2,
                                      topn = 10,
                                      output_file = 'ranking.json' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
topn optional 10 Top N items to recommend
output_file optional N.A. Output file to write predictions
  • Training
>>> obj.train()
  • Rating prediction
>>> prediction = obj.predict( userId, itemId )
Parameter Type Default value Description
userId mandatory N.A. User identifier
itemId mandatory N.A. Item identifier
  • Top-N item recommendation
>>> ranking = obj.recommend( userId, topN, includeRated )
Parameter Type Default value Description
userId mandatory N.A. User identifier
topN optional 10 Top N items to recommend
includeRated optional false Include rated items in ranking generation
  • Testing and evaluation for prediction
>>> predictionList, mae, rmse = obj.test( input_file = testset,
                                          dlmchar = b'\t',
                                          header = False,
                                          usercol = 0,
                                          itemcol = 1,
                                          ratingcol = 2,
                                          output_file = 'predictions.csv' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
output_file optional N.A. Output file to write predictions
  • Testing for recommendation
>>> recommendationList = obj.testrec( input_file = testset,
                                      dlmchar = b'\t',
                                      header = False,
                                      usercol = 0,
                                      itemcol = 1,
                                      ratingcol = 2,
                                      topn = 10,
                                      output_file = 'ranking.json' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
topn optional 10 Top N items to recommend
output_file optional N.A. Output file to write predictions
  • Training
obj.train()
  • Rating prediction
prediction = obj.predict( userId, itemId )
Parameter Type Default value Description
userId mandatory N.A. User identifier
itemId mandatory N.A. Item identifier
  • Top-N item recommendation
>>> ranking = obj.recommend( userId, topN, includeRated )
Parameter Type Default value Description
userId mandatory N.A. User identifier
topN optional 10 Top N items to recommend
includeRated optional false Include rated items in ranking generation
  • Testing and evaluation for prediction
>>> predictionList, mae, rmse = obj.test( input_file = testset,
                                          dlmchar = b'\t',
                                          header = False,
                                          usercol = 0,
                                          itemcol = 1,
                                          ratingcol = 2,
                                          output_file = 'predictions.csv' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
output_file optional N.A. Output file to write predictions
  • Testing for recommendation
>>> recommendationList = obj.testrec( input_file = testset,
                                      dlmchar = b'\t',
                                      header = False,
                                      usercol = 0,
                                      itemcol = 1,
                                      ratingcol = 2,
                                      topn = 10,
                                      output_file = 'ranking.json' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
topn optional 10 Top N items to recommend
output_file optional N.A. Output file to write predictions
  • Training
>>> obj.train( knn, similarity )
Parameter Type Default value Description
knn optional 10 K nearest neighbors
similarity optional 'pearson' Similarity metric
  • Rating prediction
>>> prediction = obj.predict( userId, itemId )
Parameter Type Default value Description
userId mandatory N.A. User identifier
itemId mandatory N.A. Item identifier
  • Top-N item recommendation
>>> ranking = obj.recommend( userId, topN, includeRated )
Parameter Type Default value Description
userId mandatory N.A. User identifier
topN optional 10 Top N items to recommend
includeRated optional false Include rated items in ranking generation
  • Testing and evaluation for prediction
>>> predictionList, mae, rmse = obj.test( input_file = testset,
                                          dlmchar = b'\t',
                                          header = False,
                                          usercol = 0,
                                          itemcol = 1,
                                          ratingcol = 2,
                                          output_file = 'predictions.csv' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
output_file optional N.A. Output file to write predictions
  • Testing for recommendation
>>> recommendationList = obj.testrec( input_file = testset,
                                      dlmchar = b'\t',
                                      header = False,
                                      usercol = 0,
                                      itemcol = 1,
                                      ratingcol = 2,
                                      topn = 10,
                                      output_file = 'ranking.json' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
topn optional 10 Top N items to recommend
output_file optional N.A. Output file to write predictions
  • Training
>>> obj.train( knn, similarity )
Parameter Type Default value Description
knn optional 10 K nearest neighbors
similarity optional 'pearson' Similarity metric
  • Rating prediction
>>> prediction = obj.predict( userId, itemId )
Parameter Type Default value Description
userId mandatory N.A. User identifier
itemId mandatory N.A. Item identifier
  • Top-N item recommendation
>>> ranking = obj.recommend( userId, topN, includeRated )
Parameter Type Default value Description
userId mandatory N.A. User identifier
topN optional 10 Top N items to recommend
includeRated optional false Include rated items in ranking generation
  • Testing and evaluation for prediction
>>> predictionList, mae, rmse = obj.test( input_file = testset,
                                          dlmchar = b'\t',
                                          header = False,
                                          usercol = 0,
                                          itemcol = 1,
                                          ratingcol = 2,
                                          output_file = 'predictions.csv' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
output_file optional N.A. Output file to write predictions
  • Testing for recommendation
>>> recommendationList = obj.testrec( input_file = testset,
                                      dlmchar = b'\t',
                                      header = False,
                                      usercol = 0,
                                      itemcol = 1,
                                      ratingcol = 2,
                                      topn = 10,
                                      output_file = 'ranking.json' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
topn optional 10 Top N items to recommend
output_file optional N.A. Output file to write predictions
  • Training
>>> obj.train( factors = 1000, maxiter = 100, lr = 0.01, lamb = 0.1 )
Parameter Type Default value Description
factors optional 1000 Number of latent factors in matrix factorization
maxiter optional 100 Maximum number of iterations reached without convergence
lr optional 0.01 Learning rate
lamb optional 0.1 Regularization parameter
  • Rating prediction
>>> prediction = obj.predict( userId, itemId )
Parameter Type Default value Description
userId mandatory N.A. User identifier
itemId mandatory N.A. Item identifier
  • Top-N item recommendation
>>> ranking = obj.recommend( userId, topN, includeRated )
Parameter Type Default value Description
userId mandatory N.A. User identifier
topN optional 10 Top N items to recommend
includeRated optional false Include rated items in ranking generation
  • Testing and evaluation for prediction
>>> predictionList, mae, rmse = obj.test( input_file = testset,
                                          dlmchar = b'\t',
                                          header = False,
                                          usercol = 0,
                                          itemcol = 1,
                                          ratingcol = 2,
                                          output_file = 'predictions.csv' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
output_file optional N.A. Output file to write predictions
  • Testing for recommendation
>>> recommendationList = obj.testrec( input_file = testset,
                                      dlmchar = b'\t',
                                      header = False,
                                      usercol = 0,
                                      itemcol = 1,
                                      ratingcol = 2,
                                      topn = 10,
                                      output_file = 'ranking.json' )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
itemcol optional 1 Item column position in dataset file
rating optional 2 Rating column position in dataset file
topn optional 10 Top N items to recommend
output_file optional N.A. Output file to write predictions
  • Training
>>> obj.train()
  • Top-N item recommendation
>>> ranking = obj.recommend( userId, topN, includeRated )
Parameter Type Default value Description
userId mandatory N.A. User identifier
topN optional 10 Top N items to recommend
includeRated optional false Include rated items in ranking generation
  • Testing for recommendation
>>> recommendationList = obj.testrec( input_file = testset,
                                      dlmchar = b'\t',
                                      header = False,
                                      usercol = 0,
                                      output_file = 'ranking.json',
                                      topN = 10 )
Parameter Type Default value Description
input_file mandatory N.A. Testset filename
dlmchar optional tab Delimiter character between fields (userid, itemid, rating)
header optional False Dataset filename contains first line header to skip
usercol optional 0 User column position in dataset file
output_file optional N.A. Output file to write rankings
topN optional 10 Top N items to recommend

On roadmap

  • Add ranking evaluation metrics.
  • Add Windows support.

About

Pyreclab is a library for quickly testing and prototyping of traditional recommender system methods, such as User KNN, Item KNN and FunkSVD Collaborative Filtering. It is developed and maintained by Gabriel Sepúlveda and Vicente Domínguez, advised by Prof. Denis Parra, all of them in Computer Science Department at PUC Chile, GRIMA Lab and SocVis…

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 90.5%
  • Python 6.1%
  • CMake 3.4%