-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e62a67b
commit 7de14c9
Showing
37 changed files
with
3,496 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
entry_point: roach.rl_birdview_agent:RlBirdviewAgent | ||
wb_run_path: null | ||
wb_ckpt_step: null | ||
env_wrapper: | ||
entry_point: roach.utils.rl_birdview_wrapper:RlBirdviewWrapper | ||
kwargs: | ||
input_states: | ||
- control | ||
- vel_xy | ||
acc_as_action: true | ||
policy: | ||
entry_point: roach.models.ppo_policy:PpoPolicy | ||
kwargs: | ||
policy_head_arch: | ||
- 256 | ||
- 256 | ||
value_head_arch: | ||
- 256 | ||
- 256 | ||
features_extractor_entry_point: roach.models.torch_layers:XtMaCNN | ||
features_extractor_kwargs: | ||
states_neurons: | ||
- 256 | ||
- 256 | ||
distribution_entry_point: roach.models.distributions:BetaDistribution | ||
distribution_kwargs: | ||
dist_init: null | ||
training: | ||
entry_point: roach.models.ppo:PPO | ||
kwargs: | ||
learning_rate: 1.0e-05 | ||
n_steps_total: 12288 | ||
batch_size: 256 | ||
n_epochs: 20 | ||
gamma: 0.99 | ||
gae_lambda: 0.9 | ||
clip_range: 0.2 | ||
clip_range_vf: null | ||
ent_coef: 0.01 | ||
explore_coef: 0.05 | ||
vf_coef: 0.5 | ||
max_grad_norm: 0.5 | ||
target_kl: 0.01 | ||
update_adv: false | ||
lr_schedule_step: 8 | ||
obs_configs: | ||
birdview: | ||
module: birdview.chauffeurnet | ||
width_in_pixels: 192 | ||
pixels_ev_to_bottom: 0 | ||
pixels_per_meter: 5.0 | ||
history_idx: | ||
- -1 | ||
- -1 | ||
- -1 | ||
- -1 | ||
scale_bbox: true | ||
scale_mask_col: 1.0 | ||
speed: | ||
module: actor_state.speed | ||
control: | ||
module: actor_state.control | ||
velocity: | ||
module: actor_state.velocity |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
entry_point: roach.rl_birdview_agent:RlBirdviewAgent | ||
wb_run_path: null | ||
wb_ckpt_step: null | ||
env_wrapper: | ||
entry_point: roach.utils.rl_birdview_wrapper:RlBirdviewWrapper | ||
kwargs: | ||
input_states: | ||
- control | ||
- vel_xy | ||
acc_as_action: true | ||
policy: | ||
entry_point: roach.models.ppo_policy:PpoPolicy | ||
kwargs: | ||
policy_head_arch: | ||
- 256 | ||
- 256 | ||
value_head_arch: | ||
- 256 | ||
- 256 | ||
features_extractor_entry_point: roach.models.torch_layers:XtMaCNN | ||
features_extractor_kwargs: | ||
states_neurons: | ||
- 256 | ||
- 256 | ||
distribution_entry_point: roach.models.distributions:BetaDistribution | ||
distribution_kwargs: | ||
dist_init: null | ||
training: | ||
entry_point: roach.models.ppo:PPO | ||
kwargs: | ||
learning_rate: 1.0e-05 | ||
n_steps_total: 12288 | ||
batch_size: 256 | ||
n_epochs: 20 | ||
gamma: 0.99 | ||
gae_lambda: 0.9 | ||
clip_range: 0.2 | ||
clip_range_vf: null | ||
ent_coef: 0.01 | ||
explore_coef: 0.05 | ||
vf_coef: 0.5 | ||
max_grad_norm: 0.5 | ||
target_kl: 0.01 | ||
update_adv: false | ||
lr_schedule_step: 8 | ||
obs_configs: | ||
birdview: | ||
module: birdview.chauffeurnet | ||
width_in_pixels: 192 | ||
pixels_ev_to_bottom: 40 | ||
pixels_per_meter: 5.0 | ||
history_idx: | ||
- -16 | ||
- -11 | ||
- -6 | ||
- -1 | ||
scale_bbox: true | ||
scale_mask_col: 1.0 | ||
speed: | ||
module: actor_state.speed | ||
control: | ||
module: actor_state.control | ||
velocity: | ||
module: actor_state.velocity |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
import numpy as np | ||
|
||
|
||
class Blocked(): | ||
|
||
def __init__(self, speed_threshold=0.1, below_threshold_max_time=90.0): | ||
self._speed_threshold = speed_threshold | ||
self._below_threshold_max_time = below_threshold_max_time | ||
self._time_last_valid_state = None | ||
|
||
def tick(self, vehicle, timestamp): | ||
info = None | ||
linear_speed = self._calculate_speed(vehicle.get_velocity()) | ||
|
||
if linear_speed < self._speed_threshold and self._time_last_valid_state: | ||
if (timestamp['relative_simulation_time'] - self._time_last_valid_state) > self._below_threshold_max_time: | ||
# The actor has been "blocked" for too long | ||
ev_loc = vehicle.get_location() | ||
info = { | ||
'step': timestamp['step'], | ||
'simulation_time': timestamp['relative_simulation_time'], | ||
'ev_loc': [ev_loc.x, ev_loc.y, ev_loc.z] | ||
} | ||
else: | ||
self._time_last_valid_state = timestamp['relative_simulation_time'] | ||
return info | ||
|
||
@staticmethod | ||
def _calculate_speed(carla_velocity): | ||
return np.linalg.norm([carla_velocity.x, carla_velocity.y]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import carla | ||
import weakref | ||
import numpy as np | ||
|
||
|
||
class Collision(): | ||
def __init__(self, vehicle, carla_world, intensity_threshold=0.0, | ||
min_area_of_collision=3, max_area_of_collision=5, max_id_time=5): | ||
blueprint = carla_world.get_blueprint_library().find('sensor.other.collision') | ||
self._collision_sensor = carla_world.spawn_actor(blueprint, carla.Transform(), attach_to=vehicle) | ||
self._collision_sensor.listen(lambda event: self._on_collision(weakref.ref(self), event)) | ||
self._collision_info = None | ||
|
||
self.registered_collisions = [] | ||
self.last_id = None | ||
self.collision_time = None | ||
|
||
# If closer than this distance, the collision is ignored | ||
self._min_area_of_collision = min_area_of_collision | ||
# If further than this distance, the area is forgotten | ||
self._max_area_of_collision = max_area_of_collision | ||
# Amount of time the last collision if is remembered | ||
self._max_id_time = max_id_time | ||
# intensity_threshold, LBC uses 400, leaderboard does not use it (set to 0) | ||
self._intensity_threshold = intensity_threshold | ||
|
||
def tick(self, vehicle, timestamp): | ||
ev_loc = vehicle.get_location() | ||
new_registered_collisions = [] | ||
# Loops through all the previous registered collisions | ||
for collision_location in self.registered_collisions: | ||
distance = ev_loc.distance(collision_location) | ||
# If far away from a previous collision, forget it | ||
if distance <= self._max_area_of_collision: | ||
new_registered_collisions.append(collision_location) | ||
|
||
self.registered_collisions = new_registered_collisions | ||
|
||
if self.last_id and timestamp['relative_simulation_time'] - self.collision_time > self._max_id_time: | ||
self.last_id = None | ||
|
||
info = self._collision_info | ||
self._collision_info = None | ||
if info is not None: | ||
info['step'] -= timestamp['start_frame'] | ||
info['simulation_time'] -= timestamp['start_simulation_time'] | ||
return info | ||
|
||
@staticmethod | ||
def _on_collision(weakself, event): | ||
self = weakself() | ||
if not self: | ||
return | ||
# Ignore the current one if it's' the same id as before | ||
if self.last_id == event.other_actor.id: | ||
return | ||
# Ignore if it's too close to a previous collision (avoid micro collisions) | ||
ev_loc = event.actor.get_transform().location | ||
for collision_location in self.registered_collisions: | ||
if ev_loc.distance(collision_location) <= self._min_area_of_collision: | ||
return | ||
# Ignore if its intensity is smaller than self._intensity_threshold | ||
impulse = event.normal_impulse | ||
intensity = np.linalg.norm([impulse.x, impulse.y, impulse.z]) | ||
if intensity < self._intensity_threshold: | ||
return | ||
|
||
# collision_type | ||
if ('static' in event.other_actor.type_id or 'traffic' in event.other_actor.type_id) \ | ||
and 'sidewalk' not in event.other_actor.type_id: | ||
collision_type = 0 # TrafficEventType.COLLISION_STATIC | ||
elif 'vehicle' in event.other_actor.type_id: | ||
collision_type = 1 # TrafficEventType.COLLISION_VEHICLE | ||
elif 'walker' in event.other_actor.type_id: | ||
collision_type = 2 # TrafficEventType.COLLISION_PEDESTRIAN | ||
else: | ||
collision_type = -1 | ||
|
||
# write to info, all quantities in in world coordinate | ||
event_loc = event.transform.location | ||
event_rot = event.transform.rotation | ||
oa_loc = event.other_actor.get_transform().location | ||
oa_rot = event.other_actor.get_transform().rotation | ||
oa_vel = event.other_actor.get_velocity() | ||
ev_rot = event.actor.get_transform().rotation | ||
ev_vel = event.actor.get_velocity() | ||
|
||
self._collision_info = { | ||
'step': event.frame, | ||
'simulation_time': event.timestamp, | ||
'collision_type': collision_type, | ||
'other_actor_id': event.other_actor.id, | ||
'other_actor_type_id': event.other_actor.type_id, | ||
'intensity': intensity, | ||
'normal_impulse': [impulse.x, impulse.y, impulse.z], | ||
'event_loc': [event_loc.x, event_loc.y, event_loc.z], | ||
'event_rot': [event_rot.roll, event_rot.pitch, event_rot.yaw], | ||
'ev_loc': [ev_loc.x, ev_loc.y, ev_loc.z], | ||
'ev_rot': [ev_rot.roll, ev_rot.pitch, ev_rot.yaw], | ||
'ev_vel': [ev_vel.x, ev_vel.y, ev_vel.z], | ||
'oa_loc': [oa_loc.x, oa_loc.y, oa_loc.z], | ||
'oa_rot': [oa_rot.roll, oa_rot.pitch, oa_rot.yaw], | ||
'oa_vel': [oa_vel.x, oa_vel.y, oa_vel.z] | ||
} | ||
|
||
self.collision_time = event.timestamp | ||
|
||
self.registered_collisions.append(ev_loc) | ||
|
||
# Number 0: static objects -> ignore it | ||
if event.other_actor.id != 0: | ||
self.last_id = event.other_actor.id | ||
|
||
def clean(self): | ||
self._collision_sensor.stop() | ||
self._collision_sensor.destroy() | ||
self._collision_sensor = None |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
from carla_gym.utils.traffic_light import TrafficLightHandler | ||
|
||
|
||
class EncounterLight(): | ||
|
||
def __init__(self, dist_threshold=7.5): | ||
self._last_light_id = None | ||
self._dist_threshold = dist_threshold | ||
|
||
def tick(self, vehicle, timestamp): | ||
info = None | ||
|
||
light_state, light_loc, light_id = TrafficLightHandler.get_light_state( | ||
vehicle, dist_threshold=self._dist_threshold) | ||
|
||
if light_id is not None: | ||
if light_id != self._last_light_id: | ||
self._last_light_id = light_id | ||
info = { | ||
'step': timestamp['step'], | ||
'simulation_time': timestamp['relative_simulation_time'], | ||
'id': light_id, | ||
'tl_loc': light_loc.tolist() | ||
} | ||
|
||
return info |
Oops, something went wrong.