This repository contains the code used for the experiments of the ICML 2019 Paper "Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces"
The paper can be found here: https://arxiv.org/abs/1902.03229
To reproduce the experiments,
- Install a Python 3.6 environment
- Install the package with "pip install -e ."
- pip install git+https://github.com/automl/HPOlib1.5
- pip install git+https://github.com/befelix/SafeOpt.git
To run the experiments, replace "{experiment_name}" in the instructions below by any of:
- camelback
- camelback_sub10
- hartmann6
- hartmann6_sub14
- gaussian10
- camelback_constraint
- hartmann6_constraint
- camelback_sub10_constraint
Instructions to run experiments and create plots:
- febo create {experiment_name} --config config/{experiment_name}.yaml
- febo run {experiment_name} (this will take a while, you can set the number of repetitions in the yaml file)
- febo plot {experiment_name} --plots febo.plots.InferenceRegret