Skip to content

A multi-label-classification model for common thorax disease.

Notifications You must be signed in to change notification settings

khairil6/ThoraxDiseaseClassification

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Intro

A multi-label-classification model for chest diseases.

Config

  • python 2.7.15
  • tensorflow 1.8.0
  • python package
    • nltk
    • PIL
    • json
    • numpy

It is all of common tookits, so I don't give their links.

DataDownload and Prepare

  • NIH Chest X-ray Dataset(kaggle's download link)
    • you need copy 'Data_Entry_2017.csv' to dir 'data/'
    • you need unzip 'images_001.zip' - 'images_012.zip' to 'data/images'
    • you need copy 'train_val_list.txt' and 'test_list.txt' to 'data/'
  • Pretrain VGG19 model

Train

First, preprocess data

  • get 'data_entry.json' and 'data_label.json'
    $ cd preprocess
    $ python get_data_entry.py    
  • get 'data/tfrecord/train-xx.tfrecord', 'data/tfrecord/test-xx.tfrecord', 'train_tfrecord_name.txt' and 'test_tfrecord_name.txt'
    $ python datasets.py    

Second, let's go train

  • you can check mlc_model.py to ensure accuracy
    $ python main.py    

Test Demo

I will release a demo.py, you can use it to test.

  • you could provide Chest CT image to test

    $ python demo.py --img='data/examples/CXR3_IM-1384-1001.png'   
  • test demo example

    example

    result

Experiments

Loss

At last, I trained 100 epoch and the train mlc_loss_weighted reduce to 0.0455, it wasted 36 hours. You can see detials in 'data/log.txt'. example

AUC

When epoch = 20, iter = 28000, I eval the auc. Actually, when epoch > 15, the model is overfitting, so you don't need trian too many epoch.

Ours Paper test num
Effusion 0.7584 0.700 4658
Pneumothorax 0.7498 0.799 2665
Edema 0.7635 0.805 925
Cardiomegaly 0.7735 0.810 1069
Pleural_Thickening 0.7602 0.684 1143
Atelectasis 0.7532 0.700 3279
Consolidation 0.7399 0.703 1815
Emphysema 0.7385 0.833 1093
Pneumonia 0.7367 0.658 555
Nodule 0.7272 0.668 1623
Mass 0.7217 0.693 1748
Infiltration 0.7399 0.661 6112
Hernia 0.7520 0.871 86
No Finding 0.7782 - 9861
Fibrosis 0.7813 0.786 435
Mean 0.7516 0.745 -

References

  • Wang, Xiaosong, et al. "Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases." Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. IEEE, 2017.
  • Wang, Xiaosong, et al. "Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

About

A multi-label-classification model for common thorax disease.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%