-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Tero Keski-Valkama
committed
Jul 4, 2017
1 parent
bfc674d
commit 05c4261
Showing
7 changed files
with
280 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
#!/usr/bin/python | ||
|
||
import matplotlib | ||
from boto.gs.acl import SCOPE | ||
from atk import Layer | ||
matplotlib.use('Agg') | ||
import pylab | ||
import math | ||
|
||
import tensorflow as tf | ||
from tensorflow.python.ops.math_ops import real | ||
import numpy as np | ||
|
||
import random | ||
import json | ||
import itertools | ||
import sys | ||
|
||
import ops | ||
|
||
def mu_law(x, mu): | ||
ml = tf.sign(x) * tf.log(mu * tf.abs(x) + 1.0) / tf.log(mu + 1.0) | ||
# Scaling between -128 and 128 integers. | ||
return tf.cast((ml + 1.0) / 2.0 * mu + 0.5, tf.int32) | ||
|
||
# value shape is [width, quantization_channels] | ||
# filters shape is [filter_width, quantization_channels, dilation_channels] | ||
# In some implementations dilation_channels is 256. | ||
def causal_atrous_conv1d(value, filters, rate, padding): | ||
# Using height in 2-D as the 1-D. Adding the batch dimension also. | ||
# Note that for filters using 'SAME' padding, padding zeros are added to the end of the input. | ||
# This means that for causal convolutions, we must shift the output right. | ||
# add zeros to the start and remove the future values from the end. | ||
|
||
value_with_batch = tf.expand_dims(value, 0) | ||
# Normally we would use this, but in practice CuDNN does not have implementations for the strided convolutions | ||
# so this only works for CPU. | ||
# value_2d = tf.expand_dims(value_with_batch, 2) | ||
# filters_2d = tf.expand_dims(filters, 1) | ||
# atrous_conv = tf.nn.atrous_conv2d(value_2d, filters_2d, rate, padding) | ||
# # Squeezing out the width and the batch dimensions. | ||
# atr_conv_1d = tf.squeeze(atrous_conv, [0, 2]) | ||
width = tf.shape(value)[0] | ||
dilation_channels = tf.shape(filters)[2] | ||
# filter_shape = tf.shape(filters) | ||
# filter_width = filter_shape[0] | ||
# filter_width_up = filter_width + (filter_width - 1) * (rate - 1) | ||
# pad_width = filter_width_up - 1 | ||
# pad_left = pad_width // 2 | ||
# pad_right = pad_width - pad_left | ||
# # We want to shift the result so that acausal values are removed. | ||
# # Any value in the output that makes use of right padding values are acausal. | ||
# # So, we remove pad_right elements from the end, and add as many zeros to the beginning. | ||
# dilation_channels = tf.shape(atr_conv_1d)[1] | ||
# causal = tf.pad(tf.slice(atr_conv_1d, [0, 0], [width - pad_right, dilation_channels]), | ||
# [[pad_right, 0], [0, 0]]) | ||
# return causal | ||
|
||
# Instead we use this implementation from Igor Babuschkin: | ||
atr_conv_1d_with_batch = ops.causal_conv(value_with_batch, filters, rate) | ||
atr_conv_1d = tf.squeeze(atr_conv_1d_with_batch, [0]) | ||
# atr_conv_1d shape is [width, dilation_channels] | ||
|
||
#return atr_conv_1d | ||
return tf.zeros([width, dilation_channels]) | ||
|
||
# Returns a tuple of output to the next layer and skip output. | ||
# The shape of x is [width, dense_channels] | ||
def gated_unit(x, dilation, parameters, layer_index): | ||
#tf.histogram_summary('{}_x'.format(layer_index), x) | ||
|
||
filter_width = parameters['filter_width'] | ||
dense_channels = parameters['dense_channels'] | ||
dilation_channels = parameters['dilation_channels'] | ||
quantization_channels = parameters['quantization_channels'] | ||
|
||
w1 = tf.Variable(tf.random_normal([filter_width, dense_channels, dilation_channels], stddev=0.05), | ||
dtype=tf.float32, name='w1') | ||
w2 = tf.Variable(tf.random_normal([filter_width, dense_channels, dilation_channels], stddev=0.05), | ||
dtype=tf.float32, name='w2') | ||
cw = tf.Variable(tf.random_normal([1, dilation_channels, dense_channels], mean=1.0, stddev=0.05), | ||
dtype=tf.float32, name='cw') | ||
|
||
#tf.histogram_summary('{}_w1'.format(layer_index), w1) | ||
#tf.histogram_summary('{}_w2'.format(layer_index), w2) | ||
#tf.histogram_summary('{}_cw'.format(layer_index), cw) | ||
|
||
with tf.name_scope('causal_atrous_convolution'): | ||
dilated1 = causal_atrous_conv1d(x, w1, dilation, 'SAME') | ||
dilated2 = causal_atrous_conv1d(x, w2, dilation, 'SAME') | ||
with tf.name_scope('gated_unit'): | ||
z = tf.multiply(tf.tanh(dilated1), tf.sigmoid(dilated2)) | ||
# dilated1, dilated2, z shapes are [width, dilation_channels] | ||
skip = tf.squeeze(tf.nn.conv1d(tf.expand_dims(z, 0), cw, 1, 'SAME'), [0]) | ||
#tf.histogram_summary('{}_skip'.format(layer_index), skip) | ||
output = skip + x | ||
#tf.histogram_summary('{}_output'.format(layer_index), output) | ||
# combined and output shapes are [width, dense_channels] | ||
return (output, skip) | ||
|
||
# Returns a tuple of (output, non-softmaxed-logits output) | ||
# The non-softmaxed output is used for the loss calculation. | ||
# The shape of x is [width, quantization_channels] | ||
# The shape of output is [width, quantization_channels] | ||
# Dilations is an array of [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, ..., 512] | ||
def layers(x, parameters): | ||
dilations = parameters['dilations'] | ||
quantization_channels = parameters['quantization_channels'] | ||
dense_channels = parameters['dense_channels'] | ||
width = parameters['sample_length'] | ||
|
||
co_dense = tf.Variable(tf.random_normal([1, quantization_channels, dense_channels], mean=1.0, stddev=0.05), | ||
dtype=tf.float32, name='dense_w') | ||
|
||
next_input = tf.squeeze(tf.nn.conv1d(tf.expand_dims(x, 0), co_dense, 1, 'SAME'), [0]) # , use_cudnn_on_gpu=False not supported... | ||
skip_connections = [] | ||
for (i, dilation) in enumerate(dilations): | ||
with tf.name_scope('layer_{}'.format(i)): | ||
print "Creating layer {}".format(i) | ||
#(output, skip) = gated_unit(next_input, dilation, parameters, i) | ||
output = tf.zeros([width, dense_channels]) | ||
skip = tf.zeros([width, dense_channels]) | ||
# output and skip shapes are [width, dense_channels] | ||
next_input = output | ||
skip_connections.append(skip) | ||
sys.stdout.flush() | ||
#skips_tensor = tf.nn.relu(tf.pack(skip_connections, 2)) | ||
|
||
#co1 = tf.Variable(tf.random_normal([1, 1, len(dilations), 1], mean=1.0, stddev=0.05), | ||
# dtype=tf.float32, name='co1') | ||
|
||
#weighted_skips = tf.squeeze(tf.nn.conv2d(tf.expand_dims(skips_tensor, 0), co1, [1, 1, 1, 1], padding = 'SAME'), [0, 3]) | ||
weighted_skips = tf.zeros([width, dense_channels]) | ||
|
||
# weighted_skips shape is [width, dense_channels] | ||
#relu1 = tf.nn.relu(weighted_skips) | ||
|
||
#co2 = tf.Variable(tf.random_normal([1, dense_channels, 256], mean=1.0, stddev=0.05), | ||
# dtype=tf.float32, name='co2') | ||
|
||
#raw_output = tf.squeeze(tf.nn.conv1d(tf.expand_dims(relu1, 0), co2, 1, 'SAME'), [0]) | ||
raw_output = tf.zeros([width, quantization_channels]) | ||
# raw_output shape is [width, quantization_channels] | ||
#output = tf.nn.softmax(raw_output) | ||
sm_outputs = [] | ||
for i in range(width): | ||
sm_outputs.append(tf.nn.softmax(tf.slice(raw_output, [i, 0], [1, -1]))) | ||
output = tf.pack(sm_outputs, 0) | ||
#output = tf.zeros([width, quantization_channels]) | ||
return (output, raw_output) | ||
|
||
def create(parameters): | ||
quantization_channels = parameters['quantization_channels'] | ||
sample_length = parameters['sample_length'] | ||
input = tf.placeholder(tf.float32, shape=(sample_length), name='input') | ||
y = input | ||
x = tf.pad(tf.slice(input, [0], [tf.shape(input)[0] - 1]), [[1, 0]]) | ||
width = tf.shape(x)[0] | ||
# x is shifted right by one and padded by zero. | ||
mu_lawd = mu_law(x, float(quantization_channels - 1)) | ||
shifted_mu_law_x = tf.one_hot(mu_lawd, quantization_channels) | ||
|
||
classes_y = mu_law(y, quantization_channels - 1) | ||
(output, raw_output) = layers(shifted_mu_law_x, parameters) | ||
#output = tf.zeros([width,quantization_channels]) | ||
#raw_output = tf.zeros([width,quantization_channels]) | ||
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(raw_output, classes_y, name='cost') | ||
|
||
tvars = tf.trainable_variables() | ||
#gradients = tf.gradients(cost, tvars) | ||
# grads, _ = tf.clip_by_global_norm(gradients, parameters['clip_gradients']) | ||
optimizer = tf.train.AdamOptimizer(learning_rate = parameters['learning_rate']) | ||
|
||
#train_op = optimizer.apply_gradients(zip(gradients, tvars)) | ||
train_op = x | ||
tf.add_check_numerics_ops() | ||
|
||
model = { | ||
'output': output, | ||
'optimizer': train_op, | ||
'x': input, | ||
'cost': cost | ||
} | ||
return model | ||
|
||
def create_generative_model(parameters): | ||
quantization_channels = parameters['quantization_channels'] | ||
input = tf.placeholder(tf.float32, name='input') | ||
mu_law_input = tf.one_hot(mu_law(input, float(quantization_channels - 1)), quantization_channels) | ||
|
||
(full_generated_output, _) = layers(mu_law_input, parameters) | ||
# Generated output is only the last predicted distribution | ||
generated_output = tf.squeeze(tf.slice(full_generated_output, [tf.shape(full_generated_output)[0] - 1, 0], [1, -1]), [0]) | ||
|
||
model = { | ||
'generated_output': generated_output, | ||
'x': input | ||
} | ||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
"""A simple script for inspect checkpoint files.""" | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import sys | ||
|
||
import tensorflow as tf | ||
|
||
FLAGS = tf.app.flags.FLAGS | ||
tf.app.flags.DEFINE_string("file_name", "", "Checkpoint filename") | ||
tf.app.flags.DEFINE_string("tensor_name", "", "Name of the tensor to inspect") | ||
tf.app.flags.DEFINE_bool("all_tensors", "False", | ||
"If True, print the values of all the tensors.") | ||
|
||
|
||
def print_tensors_in_checkpoint_file(file_name, tensor_name): | ||
"""Prints tensors in a checkpoint file. | ||
If no `tensor_name` is provided, prints the tensor names and shapes | ||
in the checkpoint file. | ||
If `tensor_name` is provided, prints the content of the tensor. | ||
Args: | ||
file_name: Name of the checkpoint file. | ||
tensor_name: Name of the tensor in the checkpoint file to print. | ||
""" | ||
try: | ||
reader = tf.train.NewCheckpointReader(file_name) | ||
if FLAGS.all_tensors: | ||
var_to_shape_map = reader.get_variable_to_shape_map() | ||
for key in var_to_shape_map: | ||
print("tensor_name: ", key) | ||
print(reader.get_tensor(key)) | ||
elif not tensor_name: | ||
print(reader.debug_string().decode("utf-8")) | ||
else: | ||
print("tensor_name: ", tensor_name) | ||
print(reader.get_tensor(tensor_name)) | ||
except Exception as e: # pylint: disable=broad-except | ||
print(str(e)) | ||
if "corrupted compressed block contents" in str(e): | ||
print("It's likely that your checkpoint file has been compressed " | ||
"with SNAPPY.") | ||
|
||
|
||
def main(unused_argv): | ||
if not FLAGS.file_name: | ||
print("Usage: inspect_checkpoint --file_name=checkpoint_file_name " | ||
"[--tensor_name=tensor_to_print]") | ||
sys.exit(1) | ||
else: | ||
print_tensors_in_checkpoint_file(FLAGS.file_name, FLAGS.tensor_name) | ||
|
||
if __name__ == "__main__": | ||
tf.app.run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,12 +1,11 @@ | ||
load("sound.mat") | ||
load("image.mat") | ||
#load("image.mat") | ||
subplot(1,1,1) | ||
size(s) | ||
seed_length = 1024 * 512; | ||
s = s(:,seed_length:size(s)(2)); | ||
subplot(1, 2, 1) | ||
s = s(:,seed_length-500:size(s)(2)); | ||
plot(s) | ||
soundsc(s, 48000) | ||
subplot(1, 2, 2) | ||
imagesc(flipud(i')) | ||
#subplot(1, 2, 2) | ||
#imagesc(flipud(i')) | ||
wavwrite(s, 48000, "generated.wav") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters