-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
78 additions
and
78 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,79 +1,79 @@ | ||
function models = PlotGAM(models,prs) | ||
|
||
%% Description | ||
% This function will generate three plots: | ||
% 1) log likelihood ratios of each model variant (with standard errors), | ||
% the ratios being taken with respect to a one-parameter null model (constant | ||
% firing rate with no tuning). | ||
% 2) Fraction of variance in neural response explained by each model variant. | ||
% 3) Marginal tuning functions of the best model. | ||
|
||
%% | ||
fprintf('...... Plotting results\n'); | ||
|
||
%% load analysis parameters | ||
prs = struct2cell(prs); | ||
[varname,vartype,~, ~,nfolds,~,~,~,~,~] = deal(prs{:}); | ||
nvars = length(varname); | ||
|
||
% give each combination of variables a name | ||
nModels = length(models.class); | ||
varlabel = cell(1,nvars); modellabel = cell(1,nModels); | ||
for i=1:nvars | ||
if strcmp(vartype{i},'2D'), varlabel{i} = varname{i}{1}(1); % use first letter of the variable name to label | ||
else, varlabel{i} = varname{i}(1); end | ||
end | ||
for i=1:nModels, modellabel{i} = cell2mat(varlabel(models.class{i})); end | ||
|
||
%% load model info | ||
testFit = cell2mat(models.testFit); | ||
nrows = size(testFit,1); | ||
bestmodel = models.bestmodel; | ||
LLvals = reshape(testFit(:,3),nfolds,nrows/nfolds); % 3rd column contains likelihood values | ||
Vexp = reshape(testFit(:,1),nfolds,nrows/nfolds); % 1st column contains variance explained | ||
xvals = models.x; | ||
if ~isnan(bestmodel), fvals = models.marginaltunings{bestmodel}; end | ||
|
||
%% plot | ||
SS_pix = get(0,'screensize'); | ||
figure; set(gcf,'Position',SS_pix); hold on; | ||
Nc = 4; % plot N x 4 panels | ||
Nr = 1 + 1 + ceil(nvars/Nc); % plot log-likelihood , var explained , tuning to each variable | ||
|
||
% likelihoods | ||
subplot(Nr,Nc,1:Nc); hold on; | ||
errorbar(nanmean(LLvals),nanstd(LLvals)/sqrt(nfolds),'ok','linewidth',3); | ||
plot(bestmodel,mean(LLvals(:,bestmodel)),'.r','markersize',20); | ||
plot(0.5:nModels+0.5,zeros(nModels+1,1),'--k','linewidth',2); | ||
set(gca,'fontsize',16); box off; | ||
set(gca,'XLim',[0 nModels+1]); set(gca,'XTick',1:nModels); | ||
set(gca,'XTickLabel',modellabel); | ||
legend('Model performance','Selected model','Null model'); | ||
ylabel('Log likelihood ratio (bits/spike)','Fontsize',12); | ||
|
||
% variance explained | ||
subplot(Nr,Nc,Nc+(1:Nc)); hold on; | ||
errorbar(nanmean(Vexp),nanstd(Vexp)/sqrt(nfolds),'ok','linewidth',3); | ||
plot(bestmodel,mean(Vexp(:,bestmodel)),'.r','markersize',20); | ||
plot(0.5:nModels+0.5,zeros(nModels+1,1),'--k','linewidth',2); | ||
set(gca,'fontsize',16); box off; | ||
set(gca,'XLim',[0 nModels+1]); set(gca,'XTick',1:nModels); | ||
set(gca,'XTickLabel',modellabel); | ||
ylabel('Fraction of variance explained','Fontsize',12); | ||
|
||
% plot tuning functions if the best model is better than the null model | ||
if ~isnan(bestmodel) | ||
for i=1:nvars | ||
if strcmp(vartype{i},'2D') && ~isempty(fvals{i}) | ||
subplot(Nr,Nc,2*Nc+i); | ||
imagesc(xvals{i}{1},xvals{i}{2},fvals{i}); | ||
xlabel(varname{i}{1}); ylabel(varname{i}{2}); | ||
set(gca,'fontsize',16); box off; | ||
elseif ~isempty(fvals{i}) | ||
subplot(Nr,Nc,2*Nc+i); | ||
plot(xvals{i},fvals{i},'Linewidth',2,'Color','k'); | ||
xlabel(varname{i}); ylabel('Firing rate (spk/s)'); | ||
set(gca,'fontsize',16); box off; | ||
end | ||
end | ||
function models = PlotGAM(models,prs) | ||
|
||
%% Description | ||
% This function will generate three plots: | ||
% 1) log likelihood ratios of each model variant (with standard errors), | ||
% the ratios being taken with respect to a one-parameter null model (constant | ||
% firing rate with no tuning). | ||
% 2) Fraction of variance in neural response explained by each model variant. | ||
% 3) Marginal tuning functions of the best model. | ||
|
||
%% | ||
fprintf('...... Plotting results\n'); | ||
|
||
%% load analysis parameters | ||
prs = struct2cell(prs); | ||
[varname,vartype,~,~, ~,nfolds,~,~,~,~,~,~,~] = deal(prs{:}); | ||
nvars = length(varname); | ||
|
||
% give each combination of variables a name | ||
nModels = length(models.class); | ||
varlabel = cell(1,nvars); modellabel = cell(1,nModels); | ||
for i=1:nvars | ||
if strcmp(vartype{i},'2D'), varlabel{i} = varname{i}{1}(1); % use first letter of the variable name to label | ||
else, varlabel{i} = varname{i}(1); end | ||
end | ||
for i=1:nModels, modellabel{i} = cell2mat(varlabel(models.class{i})); end | ||
|
||
%% load model info | ||
testFit = cell2mat(models.testFit); | ||
nrows = size(testFit,1); | ||
bestmodel = models.bestmodel; | ||
LLvals = reshape(testFit(:,3),nfolds,nrows/nfolds); % 3rd column contains likelihood values | ||
Vexp = reshape(testFit(:,1),nfolds,nrows/nfolds); % 1st column contains variance explained | ||
xvals = models.x; | ||
if ~isnan(bestmodel), fvals = models.marginaltunings{bestmodel}; end | ||
|
||
%% plot | ||
SS_pix = get(0,'screensize'); | ||
figure; set(gcf,'Position',SS_pix); hold on; | ||
Nc = 4; % plot N x 4 panels | ||
Nr = 1 + 1 + ceil(nvars/Nc); % plot log-likelihood , var explained , tuning to each variable | ||
|
||
% likelihoods | ||
subplot(Nr,Nc,1:Nc); hold on; | ||
errorbar(nanmean(LLvals),nanstd(LLvals)/sqrt(nfolds),'ok','linewidth',3); | ||
plot(bestmodel,mean(LLvals(:,bestmodel)),'.r','markersize',20); | ||
plot(0.5:nModels+0.5,zeros(nModels+1,1),'--k','linewidth',2); | ||
set(gca,'fontsize',16); box off; | ||
set(gca,'XLim',[0 nModels+1]); set(gca,'XTick',1:nModels); | ||
set(gca,'XTickLabel',modellabel); | ||
legend('Model performance','Selected model','Null model'); | ||
ylabel('Log likelihood ratio (bits/spike)','Fontsize',12); | ||
|
||
% variance explained | ||
subplot(Nr,Nc,Nc+(1:Nc)); hold on; | ||
errorbar(nanmean(Vexp),nanstd(Vexp)/sqrt(nfolds),'ok','linewidth',3); | ||
plot(bestmodel,mean(Vexp(:,bestmodel)),'.r','markersize',20); | ||
plot(0.5:nModels+0.5,zeros(nModels+1,1),'--k','linewidth',2); | ||
set(gca,'fontsize',16); box off; | ||
set(gca,'XLim',[0 nModels+1]); set(gca,'XTick',1:nModels); | ||
set(gca,'XTickLabel',modellabel); | ||
ylabel('Fraction of variance explained','Fontsize',12); | ||
|
||
% plot tuning functions if the best model is better than the null model | ||
if ~isnan(bestmodel) | ||
for i=1:nvars | ||
if strcmp(vartype{i},'2D') && ~isempty(fvals{i}) | ||
subplot(Nr,Nc,2*Nc+i); | ||
imagesc(xvals{i}{1},xvals{i}{2},fvals{i}); | ||
xlabel(varname{i}{1}); ylabel(varname{i}{2}); | ||
set(gca,'fontsize',16); box off; | ||
elseif ~isempty(fvals{i}) | ||
subplot(Nr,Nc,2*Nc+i); | ||
plot(xvals{i},fvals{i}.mean,'Linewidth',2,'Color','k'); | ||
xlabel(varname{i}); ylabel('Firing rate (spk/s)'); | ||
set(gca,'fontsize',16); box off; | ||
end | ||
end | ||
end |