Skip to content

Implementation of different research papers based on Human Activity Recognition. Idea is to use concepts and methodologies from HAR tasks and replicate towards Gait Analysis.

Notifications You must be signed in to change notification settings

karansomaiah/Alcogait-DR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Alcogait-DR

As part of the Directed Research at WPI, I worked on researching for Deep Learning Methodologies that can be used for Alcogait.

Each of the folders are different implementations and consist of the respective files. Both papers use different variants of LSTM. The whole idea of evaluating these methodologies is to be able to replicate and understand results for Human Activity Recognition. Gait Analysis is a subset of Human Activity Recognition. We focus on different publicly available datasets (Opportunity, UCI HAR dataset, etc.). The results have been reproduced as mentioned in the paper.

Paper for ensemble methods:

Guan, Y., Ploetz, T., 2017. Ensembles of deep lstm learners for activity recognition using wearables. arXiv preprint arXiv:1703.09370 .

Paper for bi-directional LSTM:

Hammerla, N.Y., Halloran, S., Ploetz, T., 2016. Deep, convolutional, and recurrent models for human activity recognition using wearables, in: IJCAI.

About

Implementation of different research papers based on Human Activity Recognition. Idea is to use concepts and methodologies from HAR tasks and replicate towards Gait Analysis.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages