Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Switch from SGD optimizer to AdamW for patch classification tasks #690

Merged
merged 9 commits into from
Oct 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 2 additions & 4 deletions configs/core/tests/offline/embeddings.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -26,11 +26,9 @@ model:
out_features: &NUM_CLASSES 2
criterion: torch.nn.CrossEntropyLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: ${oc.env:LR_VALUE, 0.1}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down
6 changes: 2 additions & 4 deletions configs/vision/pathology/offline/classification/bach.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -53,11 +53,9 @@ model:
out_features: &NUM_CLASSES 4
criterion: torch.nn.CrossEntropyLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.000625}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ trainer:
filename: best
save_last: true
save_top_k: 1
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryAccuracy}
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryBalancedAccuracy}
mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, max}
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ trainer:
filename: best
save_last: true
save_top_k: 1
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryAccuracy}
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryBalancedAccuracy}
mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, max}
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
Expand Down
8 changes: 3 additions & 5 deletions configs/vision/pathology/offline/classification/crc.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -53,11 +53,9 @@ model:
out_features: &NUM_CLASSES 9
criterion: torch.nn.CrossEntropyLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.01}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down Expand Up @@ -104,7 +102,7 @@ data:
split: val
dataloaders:
train:
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 4096}
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 256}
num_workers: &N_DATA_WORKERS ${oc.env:N_DATA_WORKERS, 4}
shuffle: true
val:
Expand Down
10 changes: 4 additions & 6 deletions configs/vision/pathology/offline/classification/mhist.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,12 @@ trainer:
filename: best
save_last: true
save_top_k: 1
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryAccuracy}
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryBalancedAccuracy}
mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, max}
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
min_delta: 0
patience: 51
patience: 70
monitor: *MONITOR_METRIC
mode: *MONITOR_METRIC_MODE
- class_path: eva.callbacks.ClassificationEmbeddingsWriter
Expand Down Expand Up @@ -53,11 +53,9 @@ model:
out_features: 1
criterion: torch.nn.BCEWithLogitsLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.000625}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ trainer:
filename: best
save_last: true
save_top_k: 1
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryAccuracy}
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryBalancedAccuracy}
mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, max}
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
Expand Down Expand Up @@ -54,11 +54,9 @@ model:
out_features: 1
criterion: torch.nn.BCEWithLogitsLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.01}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down Expand Up @@ -118,7 +116,7 @@ data:
split: test
dataloaders:
train:
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 4096}
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 256}
num_workers: &N_DATA_WORKERS ${oc.env:N_DATA_WORKERS, 4}
shuffle: true
val:
Expand Down
6 changes: 2 additions & 4 deletions configs/vision/pathology/online/classification/bach.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -45,11 +45,9 @@ model:
out_features: &NUM_CLASSES 4
criterion: torch.nn.CrossEntropyLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.000625}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down
8 changes: 3 additions & 5 deletions configs/vision/pathology/online/classification/crc.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -45,11 +45,9 @@ model:
out_features: &NUM_CLASSES 9
criterion: torch.nn.CrossEntropyLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.01}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down Expand Up @@ -86,7 +84,7 @@ data:
split: val
dataloaders:
train:
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 4096}
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 256}
num_workers: &N_DATA_WORKERS ${oc.env:N_DATA_WORKERS, 4}
shuffle: true
val:
Expand Down
10 changes: 4 additions & 6 deletions configs/vision/pathology/online/classification/mhist.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,12 @@ trainer:
filename: best
save_last: true
save_top_k: 1
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryAccuracy}
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryBalancedAccuracy}
mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, max}
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
min_delta: 0
patience: 51
patience: 70
monitor: *MONITOR_METRIC
mode: *MONITOR_METRIC_MODE
logger:
Expand All @@ -45,11 +45,9 @@ model:
out_features: 1
criterion: torch.nn.BCEWithLogitsLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.000625}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ trainer:
filename: best
save_last: true
save_top_k: 1
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryAccuracy}
monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryBalancedAccuracy}
mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, max}
- class_path: lightning.pytorch.callbacks.EarlyStopping
init_args:
Expand Down Expand Up @@ -45,11 +45,9 @@ model:
out_features: 1
criterion: torch.nn.BCEWithLogitsLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.01}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down Expand Up @@ -91,7 +89,7 @@ data:
split: test
dataloaders:
train:
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 4096}
batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 256}
num_workers: &N_DATA_WORKERS ${oc.env:N_DATA_WORKERS, 4}
shuffle: true
val:
Expand Down
6 changes: 2 additions & 4 deletions configs/vision/tests/offline/panda.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -34,11 +34,9 @@ model:
output_size: &NUM_CLASSES 6
criterion: torch.nn.CrossEntropyLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: &LR_VALUE ${oc.env:LR_VALUE, 0.00004}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down
6 changes: 2 additions & 4 deletions configs/vision/tests/offline/patch_camelyon.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -47,11 +47,9 @@ model:
out_features: 1
criterion: torch.nn.BCEWithLogitsLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: ${oc.env:LR_VALUE, 0.1}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down
6 changes: 2 additions & 4 deletions configs/vision/tests/online/patch_camelyon.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,9 @@ model:
out_features: 1
criterion: torch.nn.BCEWithLogitsLoss
optimizer:
class_path: torch.optim.SGD
class_path: torch.optim.AdamW
init_args:
lr: ${oc.env:LR_VALUE, 0.1}
momentum: 0.9
weight_decay: 0.0
lr: ${oc.env:LR_VALUE, 0.0003}
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
Expand Down
Loading