Courses on Deep Reinforcement Learning (DRL) and DRL papers for recommender system
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/
http://web.stanford.edu/class/cs234/index.html
- Reinforcement Learning: An Introduction (Second Edition). Richard S. Sutton and Andrew G. Barto. book
- A Brief Survey of Deep Reinforcement Learning. Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil Anthony Bharath. 2017. paper
- Deep Reinforcement Learing: An Overview. Yuxi Li. 2017. paper
- An MDP-Based Recommender System. Guy Shani, David Heckerman, Ronen I. Brafman. JMLR 2005. paper
- Usage-Based Web Recommendations: A Reinforcement Learning Approach. Nima Taghipour, Ahmad Kardan, Saeed Shiry Ghidary. Recsys 2007. paper
- DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation. Elad Liebman, Maytal Saar-Tsechansky, Peter Stone. AAMAS 2015. paper
- Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning. Jun Feng, Heng Li, Minlie Huang, Shichen Liu, Wenwu Ou, Zhirong Wang, Xiaoyan Zhu. WWW 2018. paper
- Reinforcement Mechanism Design for e-commerce. Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, Yiwei Zhang. WWW 2018. paper
- DRN: A Deep Reinforcement Learning Framework for News Recommendation. Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, Zhenhui Li. WWW 2018. paper
- Deep Reinforcement Learning for Page-wise Recommendations. Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, Jiliang Tang. RecSys 2018. paper
- Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning. Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, Dawei Yin. KDD 2018. paper
- Stabilizing Reinforcement Learning in Dynamic Environment with Application to Online Recommendation. Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, Hai-Hong Tang. KDD 2018. paper
- Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application. Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, Yinghui Xu. KDD 2018. paper
- A Reinforcement Learning Framework for Explainable Recommendation. Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, Xing Xie. ICDM 2018. paper
- Top-K Off-Policy Correction for a REINFORCE Recommender System. Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, Ed H. Chi. WSDM 2019. paper
- Generative Adversarial User Model for Reinforcement Learning Based Recommendation System. Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, Le Song. ICML 2019. paper
- Aggregating E-commerce Search Results from Heterogeneous Sources via Hierarchical Reinforcement Learning. Ryuichi Takanobu, Tao Zhuang, Minlie Huang, Jun Feng, Haihong Tang, Bo Zheng. WWW 2019. paper
- Policy Gradients for Contextual Recommendations. Feiyang Pan, Qingpeng Cai, Pingzhong Tang, Fuzhen Zhuang, Qing He. WWW 2019. paper
- Reinforcement Knowledge Graph Reasoning for Explainable Recommendation. Yikun Xian, Zuohui Fu, S. Muthukrishnan, Gerard de Melo, Yongfeng Zhang. SIGIR 2019. paper
- Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems. Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin. KDD 2019. paper
- Environment reconstruction with hidden confounders for reinforcement learning based recommendation. Wenjie Shang, Yang Yu, Qingyang Li, Zhiwei Qin, Yiping Meng, Jieping Ye. KDD 2019. paper
- Exact-K Recommendation via Maximal Clique Optimization. Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, Kenny Q. Zhu. KDD 2019. paper
- Hierarchical Reinforcement Learning for Course Recommendation in MOOCs. Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, Jimeng Sun. AAAI 2019. paper
- Large-scale Interactive Recommendation with Tree-structured Policy Gradient. Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang, Yuzhou Zhang, Yong Yu. AAAI 2019. paper
- Virtual-Taobao: Virtualizing real-world online retail environment for reinforcement learning. Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, An-Xiang Zeng. AAAI 2019. paper
- A Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation. Xueying Bai, Jian Guan, Hongning Wang. NeurIPS 2019. paper
- Text-Based Interactive Recommendation via Constraint-Augmented Reinforcement Learning. Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin, Changyou Chen, Lawrence Carin. NeurIPS 2019. paper
- DRCGR: Deep reinforcement learning framework incorporating CNN and GAN-based for interactive recommendation. Rong Gao, Haifeng Xia, Jing Li, Donghua Liu, Shuai Chen, and Gang Chun. ICDM 2019. paper
- Pseudo Dyna-Q: A Reinforcement Learning Framework for Interactive Recommendation. Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie, Dawei Yin. WSDM 2020. paper
- End-to-End Deep Reinforcement Learning based Recommendation with Supervised Embedding. Feng Liu, Huifeng Guo, Xutao Li, Ruiming Tang, Yunming Ye, Xiuqiang He. WSDM 2020. paper
- Reinforcement Learning based Recommender System using Biclustering Technique. Sungwoon Choi, Heonseok Ha, Uiwon Hwang, Chanju Kim, Jung-Woo Ha, Sungroh Yoon. arxiv 2018. paper
- Deep Reinforcement Learning based Recommendation with Explicit User-Item Interactions Modeling. Feng Liu, Ruiming Tang, Xutao Li, Weinan Zhang, Yunming Ye, Haokun Chen, Huifeng Guo, Yuzhou Zhang. arxiv 2018. paper
- Model-Based Reinforcement Learning for Whole-Chain Recommendations. Xiangyu Zhao, Long Xia, Yihong Zhao, Dawei Yin, Jiliang Tang. arxiv 2019. paper