Eduardo E. R. Junior - [email protected], IME-USP
The flexcm
package contains functions to fit flexible count models
that can handle equi-, over-, and underdispersion, namely we consider
COM-Poisson, Gamma-count, discrete Weibull, generalized Poisson, double
Poisson and Poisson-Tweedie models[1]. The normalizing constant for
double Poisson and COM-Poisson are written in C++.
Joint work with Walmes M. Zeviani and Clarice G.B. Demétrio.
You can install the development version of flexcm
from
GitHub with:
# install.packages("devtools")
devtools::install_github("jreduardo/flexcm")
Basically, this package implements methods similar to those related to
glm objects. The main function is flexcm(..., model)
.
library(flexcm)
# Fit models -----------------------------------------------------------
# Model families
families <- list("CMP" = "compoisson",
"GCT" = "gammacount",
"DWe" = "discreteweibull",
"GPo" = "generalizedpoisson",
"DPo" = "doublepoisson",
"PTw" = "poissontweedie")
# Fit models
models <- lapply(families, function(fam) {
flexcm(ninsect ~ extract, model = fam, data = sitophilus)
})
# Methods --------------------------------------------------------------
vapply(models, coef, numeric(5))
#> CMP GCT DWe GPo DPo PTw
#> log(nu) -0.927155720 -0.927261394 1.03484864 0.019426056 0.865851300 0.347643101
#> (Intercept) 3.449732023 3.425483284 -9.88053024 3.449990747 3.450317139 3.449987546
#> extractLeaf -0.006370969 -0.006605471 -0.04866513 -0.006369236 -0.006363878 -0.006369448
#> extractBranch -0.052157044 -0.053534485 0.07170600 -0.052129200 -0.052087403 -0.052129065
#> extractSeed -3.255210977 -4.015742799 7.60692064 -3.354677303 -3.564366151 -3.354677366
vapply(models, logLik, numeric(1))
#> CMP GCT DWe GPo DPo PTw
#> -121.6334 -121.6509 -128.7893 -122.2840 -121.7930 -121.8466
equitest(models[-3])
#>
#> Likelihood ratio test for equidispersion
#>
#> Resid.df Loglik LRT_stat LRT_df Pr(>LRT_stat)
#> COM-Poisson CMP 35 -121.633 17.899 1 2.330e-05 ***
#> Gamma-count GCT 35 -121.651 17.864 1 2.373e-05 ***
#> Generalized Poisson GPo 35 -122.284 16.598 1 4.621e-05 ***
#> Double Poisson DPo 35 -121.793 17.579 1 2.755e-05 ***
#> Poisson-Tweedie PTw 34 -121.847 17.472 2 0.0001607 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(models[["PTw"]])
#>
#> Poisson-Tweedie regression models
#> Call: flexcm(formula = ninsect ~ extract, data = sitophilus, model = fam)
#>
#> Mean coefficients:
#> (Intercept) extractLeaf extractBranch extractSeed
#> 3.449988 -0.006369 -0.052129 -3.354677
#>
#> Dispersion coefficient: omega = 0.3476
#> Power coefficient (estimated): power = 1.403
#>
#> Residual degrees of freedom: 34
#> Minus twice the log-likelihood: 243.6932
# Predict new data -----------------------------------------------------
newdf <- sitophilus[c(21, 31), -2, drop = FALSE]
purrr::map_dfr(models,
.id = "model",
.f = predict,
newdata = newdf,
type = "response",
interval = "confidence",
augment_data = TRUE)
#> # A tibble: 12 x 5
#> model extract fit lwr upr
#> <chr> <fct> <dbl> <dbl> <dbl>
#> 1 CMP Seed 1.21 0.765 1.93
#> 2 CMP Control 31.5 26.5 37.5
#> 3 GCT Seed 1.10 0.563 2.43
#> 4 GCT Control 31.5 26.5 37.5
#> 5 DWe Seed 1.50 1.08 2.03
#> 6 DWe Control 29.3 23.4 36.6
#> 7 GPo Seed 1.10 0.602 2.01
#> 8 GPo Control 31.5 26.4 37.6
#> 9 DPo Seed 0.892 0.310 2.57
#> 10 DPo Control 31.5 26.6 37.4
#> 11 PTw Seed 1.1 0.552 2.19
#> 12 PTw Control 31.5 26.6 37.4
Currently, the methods implemented for "flexcm"
objects are
methods(class = "flexcm")
#> [1] anova coef equitest fitted logLik model.matrix predict
#> [8] print summary vcov
#> see '?methods' for accessing help and source code
There are other R packages to deal with COM-Poisson models that have
somehow contributed to the writing of flexcm
.
mcglm
: Routines for fitting the multivariate covariance genelralized linear models. Currently, this package is used to fit the Poisson-Tweedie models inflexcm
.DWreg
: Fit Discrete weibull models (allows to model (q) or (\rho) parameters).gamlss.dist
: Implements (among other) double Poisson and a restrictive generalized Poisson models.glmmTMB
: Fit (among other) COM-Poisson, under a different mean-parametrization, and generalized Poisson models (includes zero-inflation, dispersion modeling and random effects).
The flexcm
package is licensed under the GNU General Public License,
version 3, see file
LICENSE.md
, © 2019 E. E., Ribeiro Jr.
- Poisson-Tweedie models are fitted using
mcglm
package