Skip to content

🎲 A python library with various gambling and gaming classes

License

Notifications You must be signed in to change notification settings

jpetrucciani/gamble

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI version Code style: black Python 3.10+ supported

gamble is a simple library that implements a collection of some common gambling-related classes

Features

  • die, dice, d-notation
  • cards, decks, hands
  • poker ranks, hand comparison

Usage

Installation

pip install gamble

Basic Usage

Dice

import gamble

# create dice, defaults to 2 6-sided dice
dice = gamble.Dice()

# roll
dice.roll()
>>> 6
dice.rolls
>>> 1

# max, min
dice.max
>>> 12
dice.min
>>> 2

# d-notation for dice constructor
dice = gamble.Dice('d20+8')

# max, min
dice.max
>>> 28
dice.min
>>> 9

# parts
dice.parts
>>> [<d20 Die>, 8]

# roll_many
dice.roll_many(2)
>>> [8, 4]

# max_of, min_of
dice.max_of(3)
>>> (11, [7, 3, 11])
dice.min_of(3)
>>> (2, [2, 9, 4])

Cards

import gamble

# create a deck, defaults to the standard 52 card deck, no jokers
# the deck will be shuffled by default, unless you pass shuffle=False
deck = gamble.Deck()

deck.cards_left
>>> 52

deck.top
>>> <Card:7â™ >
deck.bottom
>>> <Card:9â™ >
deck.shuffle()  # you can also pass times=(int) to shuffle more than once

card = deck.draw()  # you can also pass times=(int) to draw a list of cards
>>> <Card:Aâ™ >

# the unicode cards icons are implemented as well!
card.unicode
>>> "🂡"

# draw a poker hand, default size 5
hand = deck.draw_hand(). # you can pass size=(int) to draw a different size hand
>>> <Hand[5](straight flush) [Aâ™ , 2â™ , 3â™ , 4â™ , 5â™ ]>

hand.rank
>>> Rank(name='straight flush', value=8)

# arbitrary hand, from text notation
new_hand = gamble.Hand.get("2c,3c,4c,Kc,Kh")
>>> <Hand[5](pair) [2♣, 3♣, 4♣, K♣, K♥]>

new_hand.rank
>>> Rank(name='pair', value=1)

hand > new_hand
>>> True

Todo

  • hand equals/ge/le method
  • hand ranking when hands are very similar