-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added script for recording all |k| data
- Loading branch information
Showing
1 changed file
with
115 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
cd(@__DIR__) | ||
|
||
using Distributions | ||
using Printf | ||
using FFTW | ||
using JLD2 | ||
using Random | ||
using LinearAlgebra | ||
|
||
Random.seed!(parse(Int, ARGS[3])) | ||
|
||
const L = parse(Int, ARGS[2]) # must be a multiple of 4 | ||
const λ = 4.0e0 | ||
const Γ = 1.0e0 | ||
const T = 1.0e0 | ||
|
||
const Δt = 0.04e0/Γ | ||
const Rate = Float64(sqrt(2.0*Δt*Γ)) | ||
ξ = Normal(0.0e0, 1.0e0) | ||
|
||
function hotstart(n) | ||
rand(ξ, n, n, n) | ||
end | ||
|
||
function ΔH(x, ϕ, q, m²) | ||
@inbounds ϕold = ϕ[x...] | ||
ϕt = ϕold + q | ||
Δϕ = ϕt - ϕold | ||
Δϕ² = ϕt^2 - ϕold^2 | ||
|
||
@inbounds ∑nn = ϕ[x[1]%L+1, x[2], x[3]] + ϕ[x[1], x[2]%L+1, x[3]] + ϕ[x[1], x[2], x[3]%L+1] | ||
@inbounds ∑nn += ϕ[(x[1]+L-2)%L+1, x[2], x[3]] + ϕ[x[1], (x[2]+L-2)%L+1, x[3]] + ϕ[x[1], x[2], (x[3]+L-2)%L+1] | ||
|
||
3Δϕ² - Δϕ * ∑nn + 0.5m² * Δϕ² + 0.25λ * (ϕt^4 - ϕold^4) | ||
end | ||
|
||
function step(m², ϕ, x1, x2) | ||
q = Rate*rand(ξ) | ||
|
||
δH = ΔH(x1, ϕ, q, m²) + ΔH(x2, ϕ, -q, m²) + q^2 | ||
P = min(1.0f0, exp(-δH)) | ||
r = rand(Float64) | ||
|
||
if (r < P) | ||
@inbounds ϕ[x1...] += q | ||
@inbounds ϕ[x2...] -= q | ||
end | ||
end | ||
|
||
function sweep(m², ϕ) | ||
for n in 0:7 | ||
Threads.@threads for m in 0:L^3÷16-1 | ||
# Truth table-esque generation of coordinates on an L x L/4 x L/4 lattice | ||
# Printing the output should make it clear what this part is doing | ||
i = 4m ÷ (L^2) | ||
j = (m÷L) % (L÷4) | ||
k = m%L | ||
## | ||
|
||
# Convert (i,j,k) indices to LxLxL lattice coordinates with necessary offsets from n | ||
x1 = [4i+k+2(n÷4),4j+2k+(n%4),k] | ||
|
||
# Update in all six directions | ||
for μ in 0:5 | ||
x2 = copy(x1) | ||
# μ÷3 and μ%3 create another truth table of 3 directions for +/- | ||
# (L-2)*(μ÷3) term is effectively turning +1 into -1 due to the later modulus operation | ||
x2[μ%3+1] += 1+(L-2)*(μ÷3) | ||
|
||
step(m², ϕ, x1.%L.+1, x2.%L.+1) | ||
end | ||
end | ||
end | ||
end | ||
|
||
function thermalize(m², ϕ, N=10000) | ||
for i in 1:N | ||
sweep(m², ϕ) | ||
end | ||
end | ||
|
||
A = collect([i,j,k] for i in 0:L-1, j in 0:L-1, k in 0:L-1) | ||
C = [] | ||
|
||
for n in 1:3(L-1)^2 | ||
B = A[A.⋅A .== n] | ||
length(B) != 0 && push!(C, B[1].+1) | ||
end | ||
|
||
indices = map(CartesianIndex(v...) for v in C) | ||
|
||
df = load("/share/tmschaef/jkott/modelB/IC_L_$L"*"_id_"*ARGS[1]*".jld2") | ||
|
||
ϕ = df["ϕ"] | ||
m² = df["m2"] | ||
|
||
thermalize(m², ϕ, L^4÷4) | ||
|
||
skip=10 | ||
maxt = 50*L^4 | ||
|
||
open("/share/tmschaef/jkott/modelB/dynamics_k_L_$L"*"_id_"*ARGS[1]*".dat","w") do io | ||
for i in 0:maxt | ||
ϕk = fft(ϕ) | ||
|
||
Printf.@printf(io, "%i", skip*i) | ||
for k in indices | ||
Printf.@printf(io, " %f %f", real(ϕk[k...]), imag(ϕk[k...])) | ||
end | ||
|
||
Printf.@printf(io, "\n") | ||
flush(io) | ||
thermalize(m², ϕ, skip) | ||
end | ||
end |