Skip to content

make enriched heatmap which visualizes the enrichment of genomic signals to specific target regions.

License

Notifications You must be signed in to change notification settings

jokergoo/EnrichedHeatmap

Repository files navigation

Make Enriched Heatmaps

R-CMD-check codecov bioc bioc

Enriched heatmap is a special type of heatmap which visualizes the enrichment of genomic signals on specific target regions. It is broadly used to visualize e.g. how histone marks are enriched to specific sites.

There are several tools that can make such heatmap (e.g. ngs.plot or deepTools). Here we implement Enriched heatmap by ComplexHeatmap package. Since this type of heatmap is just a normal heatmap but with some fixed settings, with the functionality of ComplexHeatmap, it would be much easier to customize the heatmap as well as concatenating a list of heatmaps to show correspondance between differnet data sources.

Citation

Zuguang Gu, et al., EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations, 2018. BMC Genomics. link

Install

EnrichedHeatmap is available on Bioconductor, you can install it by:

if (!requireNamespace("BiocManager", quietly=TRUE))
    install.packages("BiocManager")
BiocManager::install("EnrichedHeatmap") 

If you want the latest version, install it directly from GitHub:

library(devtools)
install_github("jokergoo/ComplexHeatmap")
install_github("jokergoo/EnrichedHeatmap")

Example

Like other tools, the task involves two steps:

  1. Normalize the accosiations between genomic signals and target regions to a matrix.
  2. Draw heatmaps.
mat1 = normalizeToMatrix(H3K4me3, tss, value_column = "coverage", 
    extend = 5000, mean_mode = "w0", w = 50)
mat2 = normalizeToMatrix(meth, tss, value_column = "meth", mean_mode = "absolute",
    extend = 5000, w = 50, background = NA, smooth = TRUE)
partition = kmeans(mat1, centers = 3)$cluster
lgd = Legend(at = c("cluster1", "cluster2", "cluster3"), title = "Clusters", 
    type = "lines", legend_gp = gpar(col = 2:4))
ht_list = Heatmap(partition, col = structure(2:4, names = as.character(1:3)), name = "partition",
              show_row_names = FALSE, width = unit(3, "mm")) +
          EnrichedHeatmap(mat1, col = c("white", "red"), name = "H3K4me3", row_split = partition,
              top_annotation = HeatmapAnnotation(lines = anno_enriched(gp = gpar(col = 2:4))), 
              column_title = "H3K4me3") + 
          EnrichedHeatmap(mat2, name = "methylation",
              top_annotation = HeatmapAnnotation(lines = anno_enriched(gp = gpar(col = 2:4))), 
              column_title = "Methylation") +
          Heatmap(log2(rpkm+1), col = c("white", "orange"), name = "log2(rpkm+1)", 
              show_row_names = FALSE, width = unit(5, "mm"))
draw(ht_list, main_heatmap = "H3K4me3", gap = unit(c(2, 10, 2), "mm"))

image

Also when signals are discreate values. E.g. chromatin states:

test

Actually you can generate rather complex heatmaps:

screen shot 2017-10-13 at 10 42 42

License

MIT @ Zuguang Gu

About

make enriched heatmap which visualizes the enrichment of genomic signals to specific target regions.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published