Skip to content

johnhw/funnelplot

Repository files navigation

Funnel plot

Simple funnel plots for visualising sub-group variance.

This package provides simple funnel plots in Python, using Matplotlib. This lets you quickly see whether sub-groups of a population are outliers compared to the full population.

Two methods are provided:

  • parametric funnelplot which uses a standard distribution to estimate the intervals of the funnel (usually a normal distribution)
  • bootstrap funnelplot which uses bootstrapped percentiles to estimate the intervals of the funnel

A utility function funnel() to make it easy to plot data by grouping Pandas DataFrames in a Seaborn-like API is provided.

Example

Data of test performance for California schools from pydataset/Caschool.

funnel(df=data("Caschool"), x="testscr", group="county")

Install

pip install funnelplot

Examples

Full caschool example

# load some example data
import pandas as pd
import matplotlib.pyplot as plt
from pydataset import data
from funnelplot.core import funnel

# create a suitable axis
fig,ax = plt.subplots(figsize=(4,6))
ax.set_frame_on(False)

# funnel plot, using 0.5% -> 99.5% interval
funnel(df=data("Caschool"), x="testscr", group="county", percentage=99.5, error_mode="data")
C:\Users\John\Dropbox\devel\funnelplot\funnelplot\core.py:14: RuntimeWarning: invalid value encountered in true_divide
  return band / np.sqrt(group_size)
C:\Users\John\Dropbox\devel\funnelplot\funnelplot\core.py:14: RuntimeWarning: divide by zero encountered in true_divide
  return band / np.sqrt(group_size)

png

# use bootstrap instead of normal fit
fig,ax = plt.subplots(figsize=(5,6))
ax.set_frame_on(False)
funnel(df=data("Caschool"), x='testscr', group="county", bootstrap_mode=True, error_mode="bootstrap")

png

Synthetic data example

## Synthetic data
import numpy as np
import random
random.seed(2020)
np.random.seed(2020)
groups = []
p_mean, p_std = 0, 1
# random groups, with different sizes, means and std. devs.
for i in range(25):
    n_group = np.random.randint(1, 80)
    g_std =  np.random.uniform(0.1, 4.5) 
    g_mean = np.random.uniform(-1.9, 0.5)
    groups.append(np.random.normal(p_mean + g_mean,
                                   p_std + g_std, 
                                   n_group))
ax, fig = plt.subplots(figsize=(9, 4))
funnel_plot(
    groups,
    labels=[random.choice("abcdefg") * 4 for i in range(len(groups))],
    percentage=95,
)

png

ax, fig = plt.subplots(figsize=(9, 4))
# bootstrap version, using medians instead of means
funnel_plot_bootstrap(
    groups,
    labels=[random.choice("abcdefg") * 4 for i in range(len(groups))],
    percentage=95,
    stat=np.median
)

png

API

  • funnel(df, x, group, bootstrap_mode=False) show a DataFrame df as a funnel plot, rendering column x and grouping the data by group.

      Parameters:
          df: DataFrame
              The data to be shown.
          x:  string, column name
              The column of the frame to render as datapoints.
          group: string, column name
              The column to group the frame by
          bootstrap_mode: boolean, optional (default False)
              If True, uses the funnel_plot_bootstrap() function; otherwise
              use the parameteric funnel_plot() function
          **kwargs:
              passed to funnel_plot() / funnel_plot_bootstrap()
    
  • funnel_plot(data_groups, ...) plot a list of arrays as a funnel plot.

      Parameters:
          data_groups: list of 1D arrays
              a list of 1D arrays the individual groups to be analysed.
          ax: axis, optional
              an Matplotlib axis to draw onto
          dist: distribution function, like scipy.stats.norm(0,1)
              function to use to get the ppf and cdf of for plotting
          percentage: float, 0.0 -> 100.0 (default 95)
              percentage  of interval enclosed (e.g. percentage=95 will enclose 2.5% to 97.5%)
          labels: list of strings, optional
              one label string per group, will be shown only for those groups that lie outside the funnel
          left_color: matplotlib color, optional (default C1)
              color to render points to the left of the funnel bounds (negative outliers)
          right_color: matplotlib color, optional (default C2)
              color to render points to the right of the funnel bounds (positive outliers)        
          error_mode: string, optional (default "data")
              For each outlier group, can show:
                  "data": original data values for that group as a dot plot
                  "none": no error bars
                  "bootstrap": 95% bootstrap intervals, as lines
                  "ci": 95% CI intervals, as lines
          show_rug: boolean, optional (default False):
              If True, show a rug plot at the bottom of the graph, for
              the whole group population
          show_contours: boolean optional (default True)
              true if additional contours shown
    
  • funnel_plot_bootstrap(data_groups, ...) plot a list of arrays as a funnel plot, using bootstrapped intervals instead of a parametric distribution.

      Parameters:
          data_groups: list of 1D arrays
              a list of 1D arrays the individual groups to be analysed.
          ax: axis, optional
              an Matplotlib axis to draw onto
          percentage: float, 0.0 -> 100.0 (default 95)
              percentage  of interval enclosed (e.g. percentage=95 will enclose 2.5% to 97.5%)
          labels: list of strings, optional
              one label string per group, will be shown only for those groups that lie outside the funnel
          left_color: matplotlib color, optional (default C1)
              color to render points to the left of the funnel bounds (negative outliers)
          right_color: matplotlib color, optional (default C2)
              color to render points to the right of the funnel bounds (positive outliers)
          bootstrap_n: int, optional (default 1000)
              number of runs in the bootstrap
          error_mode: string, optional (default "data")
              For each outlier group, can show:
                  "data": original data values for that group as a dot plot
                  "none": no error bars
                  "bootstrap": 95% bootstrap intervals, as lines
                  "ci": 95% CI intervals, as lines
          show_rug: boolean, optional (default False):
              If True, show a rug plot at the bottom of the graph, for
              the whole group population            
          show_contours: boolean optional (default True)
              true if additional contours shown
          stat: function like np.mean, optional
              statistic to use when plotting the funnel plot  
    

About

Funnel plot

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published