Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve efficiency of cut-cell MeshData #167

Merged
merged 8 commits into from
May 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ FillArrays = "0.13, 1"
HDF5 = "0.16, 0.17"
Kronecker = "0.5"
NodesAndModes = "1"
PathIntersections = "0.1"
PathIntersections = "0.1, 0.2"
RecipesBase = "1"
RecursiveArrayTools = "3.4"
Reexport = "1"
Expand Down
35 changes: 24 additions & 11 deletions src/cut_cell_meshes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -337,7 +337,7 @@ function construct_cut_volume_quadrature(N, cutcells, physical_frame_elements;
# test exactness of the pruned quadrature rule if applicable
if target_degree >= 2 * N
V = vandermonde(physical_frame_elements[e], N, vec(xq), vec(yq))
@assert norm(V' * diagm(w) * V - V' * diagm(w_pruned) * V) < 100 * eps()
@assert norm(V' * Diagonal(w) * V - V' * Diagonal(w_pruned) * V) < 100 * eps()
end

@. xq_pruned[:, e] = xq[inds]
Expand Down Expand Up @@ -506,7 +506,7 @@ vertices of cut cells and the background cell location.
"""
function construct_physical_frame_elements(region_flags, vx, vy, cutcells)

physical_frame_elements = PhysicalFrame{2}[] # populate this as we iterate through cut cells
physical_frame_elements = typeof(PhysicalFrame())[] # populate this as we iterate through cut cells
e = 1
for ex in axes(region_flags, 1), ey in axes(region_flags, 2)
if StartUpDG.is_cut(region_flags[ex, ey])
Expand Down Expand Up @@ -883,15 +883,17 @@ function MeshData(rd::RefElemData, objects,
cut = collect(eachindex(xf.cut) .+ length(mapM_cartesian)))
mapP = copy(mapM)

# allocate a vector for points on non-boundary faces
p = zeros(Int, length(first(quad_rule_face)))
for f in eachindex(FToF)
# if it's not a boundary face
if f !== FToF[f]
idM = mapM[face_node_indices_by_face[f]]
idP = mapM[face_node_indices_by_face[FToF[f]]]
idM = view(mapM, face_node_indices_by_face[f])
idP = view(mapM, face_node_indices_by_face[FToF[f]])
xyzM = (view(xf, idM), view(yf, idM))
xyzP = (view(xf, idP), view(yf, idP))
p = StartUpDG.match_coordinate_vectors(xyzM, xyzP)
mapP[idM[p]] .= idP
StartUpDG.match_coordinate_vectors!(p, xyzM, xyzP)
@. mapP[idM[p]] = idP
end
end
mapB = findall(vec(mapM) .== vec(mapP)) # determine boundary nodes
Expand Down Expand Up @@ -939,11 +941,11 @@ function MeshData(rd::RefElemData, objects,

VDM = vandermonde(elem, rd.N, x.cut[:, e], y.cut[:, e])
Vq, Vrq, Vsq = map(A -> A / VDM,
basis(elem, rd.N, xq.cut[:,e], yq.cut[:, e]))
basis(elem, rd.N, view(xq.cut, :, e), view(yq.cut, :, e)))

M = Vq' * diagm(wJq.cut[:, e]) * Vq
Qr = Vq' * diagm(wJq.cut[:, e]) * Vrq
Qs = Vq' * diagm(wJq.cut[:, e]) * Vsq
M = Vq' * Diagonal(wJq.cut[:, e]) * Vq
Qr = Vq' * Diagonal(wJq.cut[:, e]) * Vrq
Qs = Vq' * Diagonal(wJq.cut[:, e]) * Vsq
Dx_e, Dy_e = M \ Qr, M \ Qs

xf_e = xf.cut[cut_face_node_indices_by_cell[e]]
Expand All @@ -959,7 +961,7 @@ function MeshData(rd::RefElemData, objects,
push!(face_interpolation_matrices, Vf)
push!(differentiation_matrices, (Dx_e, Dy_e))
push!(mass_matrices, M)
push!(lift_matrices, M \ (Vf' * diagm(wf)))
push!(lift_matrices, M \ (Vf' * Diagonal(wf)))
end
cut_cell_operators = (; volume_interpolation_matrices,
face_interpolation_matrices,
Expand Down Expand Up @@ -1007,6 +1009,17 @@ function MeshData(rd::RefElemData, objects,

end

"""
hybridized_SBP_operators(md::MeshData{2, <:CutCellMesh})

This constructs hybridized SBP operators using the approach taken in Chan (2019),
"Skew-Symmetric Entropy Stable Modal Discontinuous Galerkin Formulations".
[https://doi.org/10.1007/s10915-019-01026-w](https://doi.org/10.1007/s10915-019-01026-w)

This function returns `hybridized_operators::Vector{Tuple{<:Matrix, <:Matrix}}` and
`project_and_interp_operators, projection_operators, interpolation_operators`, which are
all `Vector{<:Matrix}`, where each entry corresponds to a cut element.
"""
function hybridized_SBP_operators(md::MeshData{2, <:CutCellMesh})
mt = md.mesh_type
(; volume_interpolation_matrices,
Expand Down
14 changes: 6 additions & 8 deletions src/physical_frame_basis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -176,25 +176,23 @@ function caratheodory_pruning_qr(V, w_in)
inds = collect(1:M)
m = M-N
Q, _ = qr(V)
Q = copy(Q)
for _ in 1:m
kvec = Q[:,end]
kvec = view(Q, :, size(Q, 2))

# for subtracting the kernel vector
idp = findall(@. kvec > 0)
alphap, k0p = findmin(w[inds[idp]] ./ kvec[idp])
alphap, k0p = findmin(view(w, inds[idp]) ./ view(kvec, idp))
k0p = idp[k0p]

# for adding the kernel vector
idn = findall(@. kvec < 0);
alphan, k0n = findmax(w[inds[idn]] ./ kvec[idn])
k0n = idn[k0n];
idn = findall(@. kvec < 0)
alphan, k0n = findmax(view(w, inds[idn]) ./ view(kvec, idn))
k0n = idn[k0n]

alpha, k0 = abs(alphan) < abs(alphap) ? (alphan, k0n) : (alphap, k0p)
w[inds] = w[inds] - alpha * kvec
@. w[inds] = w[inds] - alpha * kvec
deleteat!(inds, k0)
Q, _ = qr(V[inds, :])
Q = copy(Q)
end
return w, inds
end
Loading