forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
2 changed files
with
151 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
from pathlib import Path | ||
from typing import Dict, Iterable, List, Tuple | ||
|
||
import datasets | ||
from datasets.download.download_manager import DownloadManager | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """ | ||
@misc{pilar2023cebuaner, | ||
title={CebuaNER - A New Baseline Cebuano Named Entity Recognition Model}, | ||
author={Ma. Beatrice Emanuela Pilar and Ellyza Mari Papas and Mary Loise Buenaventura and Dane Dedoroy and Myron Darrel Montefalcon and Jay Rhald Padilla and Lany Maceda and Mideth Abisado and Joseph Marvin Imperial}, | ||
year={2023}, | ||
eprint={2310.00679}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.CL} | ||
} | ||
""" | ||
|
||
_LOCAL = False | ||
_LANGUAGES = ["ceb"] | ||
_DATASETNAME = "cebuaner" | ||
_DESCRIPTION = """\ | ||
The CebuaNER dataset contains 4000+ news articles that have been tagged by | ||
native speakers of Cebuano usin gthe BIO encoding schema for the named entity | ||
recognition (NER) task. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/mebzmoren/CebuaNER" | ||
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value | ||
_URL = "https://github.com/mebzmoren/CebuaNER/raw/main/data/annotated_data/final-1.txt" | ||
|
||
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] | ||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class CebuaNERDataset(datasets.GeneratorBasedBuilder): | ||
"""CebuaNER dataset from https://github.com/mebzmoren/CebuaNER""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
SEACROWD_SCHEMA_NAME = "seq_label" | ||
LABEL_CLASSES = [ | ||
"O", | ||
"B-PER", | ||
"I-PER", | ||
"B-ORG", | ||
"I-ORG", | ||
"B-LOC", | ||
"I-LOC", | ||
"B-OTHER", | ||
"I-OTHER", | ||
] | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=_DATASETNAME, | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"tokens": datasets.Sequence(datasets.Value("string")), | ||
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.LABEL_CLASSES)), | ||
} | ||
) | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.seq_label_features(self.LABEL_CLASSES) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: | ||
data_file = Path(dl_manager.download_and_extract(_URL)) | ||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={"filepath": data_file, "split": "train"}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={"filepath": data_file, "split": "dev"}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={"filepath": data_file, "split": "test"}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
label_key = "ner_tags" if self.config.schema == "source" else "labels" | ||
examples: Iterable[Dict[str, List[str]]] = [] | ||
with open(filepath, encoding="utf-8") as f: | ||
tokens = [] | ||
ner_tags = [] | ||
for line in f: | ||
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | ||
if tokens: | ||
examples.append({"tokens": tokens, label_key: ner_tags}) | ||
if len(tokens) != len(ner_tags): | ||
raise ValueError(f"Tokens and tags are not aligned! {len(tokens)} != {len(ner_tags)}") | ||
tokens = [] | ||
ner_tags = [] | ||
else: | ||
# CebuaNER iob are separated by spaces | ||
token, _, _, ner_tag = line.split(" ") | ||
tokens.append(token) | ||
ner_tags.append(ner_tag.rstrip()) | ||
if tokens: | ||
examples.append({"tokens": tokens, label_key: ner_tags}) | ||
if len(tokens) != len(ner_tags): | ||
raise ValueError(f"Tokens and tags are not aligned! {len(tokens)} != {len(ner_tags)}") | ||
|
||
# The CebuaNER paper doesn't provide a recommended split. However, the Github repository | ||
# contains a notebook example of the split they used in the report: | ||
# https://github.com/mebzmoren/CebuaNER/blob/main/notebooks/Named-Entity-Recognition-with-Conditional-Random-Fields.ipynb | ||
if split == "train": | ||
final_examples = examples[0:2980] | ||
if split == "test": | ||
final_examples = examples[2980:3831] | ||
if split == "dev": | ||
final_examples = examples[3831:] | ||
|
||
for idx, eg in enumerate(final_examples): | ||
eg["id"] = idx | ||
yield idx, eg |